ﻻ يوجد ملخص باللغة العربية
At partial filling of a flat band, strong electronic interactions may favor gapped states harboring emergent topology with quantized Hall conductivity. Emergent topological states have been found in partially filled Landau levels and Hofstadter bands; in both cases, a large magnetic field is required to engineer the underlying flat band. The recent observation of quantum anomalous Hall effects (QAH) in narrow band moire systems has led to the theoretical prediction that such phases may be realized even at zero magnetic field. Here we report the experimental observation of insulators with Chern number $C=1$ in the zero magnetic field limit at $ u=3/2$ and $7/2$ filling of the moire superlattice unit cell in twisted monolayer-bilayer graphene (tMBG). Our observation of Chern insulators at half-integer values of $ u$ suggests spontaneous doubling of the superlattice unit cell, in addition to spin- and valley-ferromagnetism. This is confirmed by Hartree-Fock calculations, which find a topological charge density wave ground state at half filling of the underlying $C=2$ band, in which the Berry curvature is evenly partitioned between occupied and unoccupied states. We find the translation symmetry breaking order parameter is evenly distributed across the entire folded superlattice Brillouin zone, suggesting that the system is in the flat band, strongly correlated limit. Our findings show that the interplay of quantum geometry and Coulomb interactions in moire bands allows for topological phases at fractional superlattice filling that spontaneously break time-reversal symmetry, a prerequisite in pursuit of zero magnetic field phases harboring fractional statistics as elementary excitations or bound to lattice dislocations.
The flat bands resulting from moire superlattices in magic-angle twisted bilayer graphene (MATBG) and ABC-trilayer graphene aligned with hexagonal boron nitride (ABC-TLG/hBN) have been shown to give rise to fascinating correlated electron phenomena s
In magic angle twisted bilayer graphene, electron-electron interactions play a central role resulting in correlated insulating states at certain integer fillings. Identifying the nature of these insulators is a central question and potentially linked
Tight binding models like the Hubbard Hamiltonian are most often explored in the context of uniform intersite hopping $t$. The electron-electron interactions, if sufficiently large compared to this translationally invariant $t$, can give rise to orde
Heterostructures of mixed-valence manganites are still under intense scrutiny, due to the occurrence of exotic quantum phenomena linked to electronic correlation and interfacial composition. For instance, if two anti-ferromagnetic insulators as LaMnO
Experimental signatures of charge density waves (CDW) in high-temperature superconductors have evoked much recent interest, yet an alternative interpretation has been theoretically raised based on electronic standing waves resulting from quasiparticl