ﻻ يوجد ملخص باللغة العربية
We discuss two projects in non-linear cosmostatistics applicable to very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy redshifts and their number density distribution from approximate, photometric redshift data. The second focuses on cosmic voids and uses them to construct cosmic spheres that allow reconstructing the expansion history of the Universe using the Alcock-Paczynski test. In both cases we find that non-linearities enable the methods or enhance the results: non-linear gravitational evolution creates voids and our photo-z reconstruction works best in the highest density (and hence most non-linear) portions of our simulations.
We study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based on N-body simulations.
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon es
We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior
We use identification robust tests to show that difference, level and non-linear moment conditions, as proposed by Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998) and Ahn and Schmidt (1995) for the linear dynamic panel d
Classical semiparametric inference with missing outcome data is not robust to contamination of the observed data and a single observation can have arbitrarily large influence on estimation of a parameter of interest. This sensitivity is exacerbated w