ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification robust inference for moments based analysis of linear dynamic panel data models

97   0   0.0 ( 0 )
 نشر من قبل Frank Kleibergen
 تاريخ النشر 2021
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

We use identification robust tests to show that difference, level and non-linear moment conditions, as proposed by Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998) and Ahn and Schmidt (1995) for the linear dynamic panel data model, do not separately identify the autoregressive parameter when its true value is close to one and the variance of the initial observations is large. We prove that combinations of these moment conditions, however, do so when there are more than three time series observations. This identification then solely results from a set of, so-called, robust moment conditions. These robust moments are spanned by the combined difference, level and non-linear moment conditions and only depend on differenced data. We show that, when only the robust moments contain identifying information on the autoregressive parameter, the discriminatory power of the Kleibergen (2005) LM test using the combined moments is identical to the largest rejection frequencies that can be obtained from solely using the robust moments. This shows that the KLM test implicitly uses the robust moments when only they contain information on the autoregressive parameter.



قيم البحث

اقرأ أيضاً

We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the unobserv ed confounders. We focus on a novel, complementary, approach to identification where assumptions are made about the relation between the treatment assignment and the unobserved confounders. We introduce different sets of assumptions that follow the two paths to identification, and develop a double robust approach. We propose estimation methods that build on these identification strategies.
This paper studies identification and estimation of a class of dynamic models in which the decision maker (DM) is uncertain about the data-generating process. The DM surrounds a benchmark model that he or she fears is misspecified by a set of models. Decisions are evaluated under a worst-case model delivering the lowest utility among all models in this set. The DMs benchmark model and preference parameters are jointly underidentified. With the benchmark model held fixed, primitive conditions are established for identification of the DMs worst-case model and preference parameters. The key step in the identification analysis is to establish existence and uniqueness of the DMs continuation value function allowing for unbounded statespace and unbounded utilities. To do so, fixed-point results are derived for monotone, convex operators that act on a Banach space of thin-tailed functions arising naturally from the structure of the continuation value recursion. The fixed-point results are quite general; applications to models with learning and Rust-type dynamic discrete choice models are also discussed. For estimation, a perturbation result is derived which provides a necessary and sufficient condition for consistent estimation of continuation values and the worst-case model. The result also allows convergence rates of estimators to be characterized. An empirical application studies an endowment economy where the DMs benchmark model may be interpreted as an aggregate of experts forecasting models. The application reveals time-variation in the way the DM pessimistically distorts benchmark probabilities. Consequences for asset pricing are explored and connections are drawn with the literature on macroeconomic uncertainty.
We propose a new estimator for the average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the two-way-fixed-effects specification with the unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including situations where units opt into the treatment sequentially. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified and performs better than the two-way-fixed-effect estimator if both are locally misspecified. This strong double robustness property quantifies the benefits from modeling the assignment process and motivates using our estimator in practice.
A new statistical procedure, based on a modified spline basis, is proposed to identify the linear components in the panel data model with fixed effects. Under some mild assumptions, the proposed procedure is shown to consistently estimate the underly ing regression function, correctly select the linear components, and effectively conduct the statistical inference. When compared to existing methods for detection of linearity in the panel model, our approach is demonstrated to be theoretically justified as well as practically convenient. We provide a computational algorithm that implements the proposed procedure along with a path-based solution method for linearity detection, which avoids the burden of selecting the tuning parameter for the penalty term. Monte Carlo simulations are conducted to examine the finite sample performance of our proposed procedure with detailed findings that confirm our theoretical results in the paper. Applications to Aggregate Production and Environmental Kuznets Curve data also illustrate the necessity for detecting linearity in the partially linear panel model.
117 - Jiangtao Duan , Wei Gao , Hao Qu 2019
In this paper, a statistical model for panel data with unobservable grouped factor structures which are correlated with the regressors and the group membership can be unknown. The factor loadings are assumed to be in different subspaces and the subsp ace clustering for factor loadings are considered. A method called least squares subspace clustering estimate (LSSC) is proposed to estimate the model parameters by minimizing the least-square criterion and to perform the subspace clustering simultaneously. The consistency of the proposed subspace clustering is proved and the asymptotic properties of the estimation procedure are studied under certain conditions. A Monte Carlo simulation study is used to illustrate the advantages of the proposed method. Further considerations for the situations that the number of subspaces for factors, the dimension of factors and the dimension of subspaces are unknown are also discussed. For illustrative purposes, the proposed method is applied to study the linkage between income and democracy across countries while subspace patterns of unobserved factors and factor loadings are allowed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا