ﻻ يوجد ملخص باللغة العربية
We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior distribution of material states. We specifically consider physical systems with states characterized by points in a phase space determined by the governing field equations. We assume that the system is characterized by two likelihood measures: one $mu_D$ measuring the likelihood of observing a material state in phase space; and another $mu_E$ measuring the likelihood of states satisfying the field equations, possibly under random actuation. We introduce a notion of intersection between measures which can be interpreted to quantify the likelihood of system outcomes. We provide conditions under which the intersection can be characterized as the athermal limit $mu_infty$ of entropic regularizations $mu_beta$, or thermalizations, of the product measure $mu = mu_Dtimes mu_E$ as $beta to +infty$. We also supply conditions under which $mu_infty$ can be obtained as the athermal limit of carefully thermalized $(mu_{h,beta_h})$ sequences of empirical data sets $(mu_h)$ approximating weakly an unknown likelihood function $mu$. In particular, we find that the cooling sequence $beta_h to +infty$ must be slow enough, corresponding to quenching, in order for the proper limit $mu_infty$ to be delivered. Finally, we derive explicit analytic expressions for expectations $mathbb{E}[f]$ of outcomes $f$ that are explicit in the data, thus demonstrating the feasibility of the model-free data-driven paradigm as regards making convergent inferences directly from the data without recourse to intermediate modeling steps.
The data-driven computing paradigm initially introduced by Kirchdoerfer and Ortiz (2016) enables finite element computations in solid mechanics to be performed directly from material data sets, without an explicit material model. From a computational
Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular verification of programs that make use of these libraries naturally rely on specifications that capture important properties about how the libr
We discuss two projects in non-linear cosmostatistics applicable to very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy redshifts and their number density distribution from approximate, photometric redshift data. The seco
In this paper we show how nuisance parameter marginalized posteriors can be inferred directly from simulations in a likelihood-free setting, without having to jointly infer the higher-dimensional interesting and nuisance parameter posterior first and
Data-driven inference was recently introduced as a protocol that, upon the input of a set of data, outputs a mathematical description for a physical device able to explain the data. The device so inferred is automatically self-consistent, that is, ca