ﻻ يوجد ملخص باللغة العربية
Nonlinear redshift-space distortions, the Finger-of-God (FoG) effect, can complicate the interpretation of the galaxy power spectrum. Here, we demonstrate the method proposed by Hikage et al. (2012) to use complimentary observations to directly constrain this effect on the data. We use catalogs of Luminous Red Galaxies (LRGs) and photometric galaxies from the SDSS DR7 to measure the redshift-space power spectrum of LRGs, the cross-correlation of LRGs with the shapes of background photometric galaxies (galaxy-galaxy weak lensing), and the projected cross-correlation of LRGs with photometric galaxies having similar photometric redshifts to the LRG spectroscopic redshift. All of these measurements use a reconstructed halo field. While we use the position of each LRG for single LRG systems, we compare the measurements using different halo-center proxies for multiple-LRG systems (4.5 per cent of all the halos): the brightest LRG position (BLRG), the faintest LRG position (FLRG) and their arithmetical mean position (Mean), respectively, in each system. We find significant differences in the measured correlations of different centers, showing consistent off-centering effects in the three observables. By comparing the measurements with a halo model that treats the satellite photometric galaxies as being distributed according to a generalized NFW profile, we find that about 40 (70) per cent of BLRGs (FLRGs) are off-centered satellite galaxies in the multiple-LRG systems. The satellite LRGs have typical off-centering radius of about 400 kpc/h, and velocity dispersion of about 500 km/s in host halos with a mean mass of 1.6x10^14 Ms/h. We show that, if LRGs in the single LRG systems have similar offsets, the residual FoG contamination in the LRG power spectrum can be significant at k>0.1 h/Mpc, which may cause a bias in cosmological parameters such as the neutrino mass.
We develop a novel abundance matching method to construct a mock catalog of luminous red galaxies (LRGs) in SDSS, using catalogs of halos and subhalos in N-body simulations for a LCDM model. Motivated by observations suggesting that LRGs are passivel
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and tes
The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal to noise is smaller than that of lensing shear. Because its systemati
The advent of new deep+wide photometric lensing surveys will open up the possibility of direct measurements of the dark matter halos of dwarf galaxies. The HSC wide survey will be the first with the statistical capability of measuring the lensing sig
Public data from the 2dF quasar survey (2QZ) and 2dF/SDSS LRG & QSO (2SLAQ), with their vast reservoirs of spectroscopically located and identified sources, afford us the chance to more accurately study their real space correlations in the hopes of i