ﻻ يوجد ملخص باللغة العربية
Public data from the 2dF quasar survey (2QZ) and 2dF/SDSS LRG & QSO (2SLAQ), with their vast reservoirs of spectroscopically located and identified sources, afford us the chance to more accurately study their real space correlations in the hopes of identifying the physical processes that trigger quasar activity. We have used these two public databases to measure the projected cross correlation, $omega_p$, between quasars and luminous red galaxies. We find the projected two-point correlation to have a fitted clustering radius of $r_0, = 5.3 pm 0.6 $ and a slope, $gamma =1.83 pm 0.42 $ on scales from 0.7-27$h^{-1}$Mpc. We attempt to understand this strong correlation by separating the LRG sample into 2 populations of blue and red galaxies. We measure at the cross correlation with each population. We find that these quasars have a stronger correlation amplitude with the bluer, more recently starforming population in our sample than the redder passively evolving population, which has a correlation that is much more noisy and seems to flatten on scales $< 5h^{-1}$Mpc. We compare this result to published work on hierarchical models. The stronger correlation of bright quasars with LRGs that have undergone a recent burst of starformation suggests that the physical mechanisms that produce both activities are related and that minor mergers or tidal effects may be important triggers of bright quasar activity and/or that bright quasars are less highly biased than faint quasars.
Nonlinear redshift-space distortions, the Finger-of-God (FoG) effect, can complicate the interpretation of the galaxy power spectrum. Here, we demonstrate the method proposed by Hikage et al. (2012) to use complimentary observations to directly const
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and tes
The clustering properties of the Universe at large-scales are currently being probed at various redshifts through several cosmological tracers and with diverse statistical estimators. Here we use the three-point angular correlation function (3PACF) t
We investigate the effects of the nonminimal coupling between the scalar field dark energy (quintessence) and the dark matter on the two- point correlation function. It is well known that this coupling shifts the turnover scale as well as suppresses
We provide constraints on the accuracy with which the neutrino mass fraction, $f_{ u}$, can be estimated when exploiting measurements of redshift-space distortions, describing in particular how the error on neutrino mass depends on three fundamental