ﻻ يوجد ملخص باللغة العربية
The propagator of a physical degree of freedom ought to obey a K{a}ll{e}n-Lehmann spectral representation, with positive spectral density. The latter quantity is directly related to a cross section based on the optical theorem. The spectral density is a crucial ingredient of a quantum field theory with elementary and bound states, with a direct experimental connection as the masses of the excitations reflect themselves into (continuum) $delta$-singularities. In usual lattice simulational approaches to the QCD spectrum the spectral density itself is not accessed. The (bound state) masses are extracted from the asymptotic exponential decay of the two-point function. Given the importance of the spectral density, each nonperturbative continuum approach to QCD should be able to adequately describe it or to take into proper account. In this work, we wish to present a first trial in extracting an estimate for the scalar glueball spectral density in SU(3) gluodynamics using lattice gauge theory.
We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 co
We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispers
The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_pisim 938$ MeV and $650$
To obtain the precise values of the bulk quantities and transport coefficients in quark-gluon-plasma phase, we propose that a direct calculation of the renormalized energy-momentum tensor (EMT) on the lattice using the gradient flow. From one-point f
We propose a method to use lattice QCD to compute the Borel transform of the vacuum polarization function appearing in the Shifman-Vainshtein-Zakharov (SVZ) QCD sum rule. We construct the spectral sum corresponding to the Borel transform from two-poi