We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 configurations at 0.092 fm with a pion mass of 360 MeV. We report masses for 10 glueball states. We discuss the prospects for unquenched lattice QCD calculations of the oddballs.
We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are
made at the squared lattice spacings at an equal distance a^2~0.005, 0.01 and 0.015 fm^2, and the continuum limit is taken assuming an O(a^2) discretization error. The light meson spectrum is consistent with experiment. The up, down and strange quark masses in the bar{MS} scheme at 2 GeV are bar{m}=(m_{u}+m_{d})/2=3.55^{+0.65}_{-0.28} MeV and m_s=90.1^{+17.2}_{-6.1} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_pisim 938$ MeV and $650$
MeV. The quark mass dependence of the glueball masses have not been investigated in the present study. Only the gluonic operators built from Wilson loops are utilized in calculating the corresponding correlation functions. In the tensor channel, we obtain the ground state mass to be 2.363(39) GeV and 2.384(67) GeV at $m_pisim 938$ MeV and $650$ MeV, respectively. In the pseudoscalar channel, when using the gluonic operator whose continuum limit has the form of $epsilon_{ijk}TrB_iD_jB_k$, we obtain the ground state mass to be 2.573(55) GeV and 2.585(65) GeV at the two pion masses. These results are compatible with the corresponding results in the quenched approximation. In contrast, if we use the topological charge density as field operators for the pseudoscalar, the masses of the lowest state are much lighter (around 1GeV) and compatible with the expected masses of the flavor singlet $qbar{q}$ meson. This indicates that the operator $epsilon_{ijk}TrB_iD_jB_k$ and the topological charge density couple rather differently to the glueball states and $qbar{q}$ mesons. The observation of the light flavor singlet pseudoscalar meson can be viewed as the manifestation of effects of dynamical quarks. In the scalar channel, the ground state masses extracted from the correlation functions of gluonic operators are determined to be around 1.4-1.5 GeV, which is close to the ground state masses from the correlation functions of the quark bilinear operators. In all cases, the mixing between glueballs and conventional mesons remains to be further clarified in the future.
We compute the static-light baryon spectrum by means of Wilson twisted mass lattice QCD using N_f = 2 flavors of sea quarks. As light u/d valence quarks we consider quarks, which have the same mass as the sea quarks with corresponding pion masses in
the range 340 MeV < m_PS < 525 MeV, as well as partially quenched s quarks, which have a mass around the physical value. We consider all possible combinations of two light valence quarks, i.e. Lambda, Sigma, Xi and Omega baryons corresponding to isospin I = 0, 1/2, 1 and strangeness S = 0, -1, -2 as well as angular momentum of the light degrees of freedom j = 0, 1 and parity P = +, -. We extrapolate in the light u/d and in the heavy b quark mass to the physical point and compare with available experimental results. Besides experimentally known positive parity states we are also able to predict a number of negative parity states, which have neither been measured in experiments nor previously been computed by lattice methods.
The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark
and two very light flavors ($u/d$) of variable mass allowing extrapolations to the physical chiral limit. We employ Nonrelativistic QCD to simulate the $b$ quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 GeV$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |v_{ub}|^2 = 1.46(35) ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averaging Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 4.22(30)(51) times 10^{-3}$. PLEASE NOTE APPENDIX B with an ERRATUM, to appear in Physical Review D, to the published version of this e-print (Phys.Rev.D 73, 074502 (2006)). Results for the form factor $f_+(q^2)$ in the chiral limit have changed significantly. The last two sentences in this abstract should now read; We calculate the form factor $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 Gev$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |V_{ub}|^2 = 2.07(57)ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averagibg Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 3.55(25)(50) times 10^{-3}$.
The propagator of a physical degree of freedom ought to obey a K{a}ll{e}n-Lehmann spectral representation, with positive spectral density. The latter quantity is directly related to a cross section based on the optical theorem. The spectral density i
s a crucial ingredient of a quantum field theory with elementary and bound states, with a direct experimental connection as the masses of the excitations reflect themselves into (continuum) $delta$-singularities. In usual lattice simulational approaches to the QCD spectrum the spectral density itself is not accessed. The (bound state) masses are extracted from the asymptotic exponential decay of the two-point function. Given the importance of the spectral density, each nonperturbative continuum approach to QCD should be able to adequately describe it or to take into proper account. In this work, we wish to present a first trial in extracting an estimate for the scalar glueball spectral density in SU(3) gluodynamics using lattice gauge theory.