ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD Thermodynamics on the Lattice from the Gradient Flow

76   0   0.0 ( 0 )
 نشر من قبل Etsuko Itou
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To obtain the precise values of the bulk quantities and transport coefficients in quark-gluon-plasma phase, we propose that a direct calculation of the renormalized energy-momentum tensor (EMT) on the lattice using the gradient flow. From one-point function of EMT, authors in Ref.[1] obtained the interaction measure and thermal entropy. The results are consistent with the one obtained by the integral method. Based on the success, we try to measure the two-point function of EMT, which is related to the transport coefficients. Advantages of our method are (1) a clear signal because of the smearing effects of the gradient flow and (2) no need to calculate the wave function renormalization of EMT. In addition, we give a short remark on a comparison of the numerical cost between the positive- and adjoint-flow methods for fermions, needed to obtain the EMT in the (2+1) flavor QCD.



قيم البحث

اقرأ أيضاً

The energy-momentum tensor plays an important role in QCD thermodynamics. Its expectation value contains information of the pressure and the energy density as its diagonal part. Further properties like viscosity and specific heat can be extracted fro m its correlation function. Recently a new method based on the gradient flow was introduced to calculate the energy-momentum tensor on the lattice, and has been successfully applied to quenched QCD. In this paper, we apply the gradient flow method to calculate the energy-momentum tensor in (2+1)-flavor QCD. As the first application of the method with dynamical quarks, we study at a single but fine lattice spacing a=0.07 fm with heavy u and d quarks ($m_pi/m_rho=0.63$) and approximately physical s quark. Performing simulations on lattices with Nt=16 to 4, the temperature range of T=174-697 MeV is covered. We find that the results of the pressure and the energy density by the gradient flow method are consistent with the previous results using the T-integration method at T<280 MeV, while the results show disagreement at T>350 MeV (Nt<8), presumably due to the small-Nt lattice artifact of $O((aT)^2)=O(1/N_t^2)$. We also apply the gradient flow method to evaluate the chiral condensate taking advantage of the gradient flow method that renormalized quantities can be directly computed avoiding the difficulty of explicit chiral violation with lattice quarks. We compute the renormalized chiral condensate in the MS-bar scheme at renormalization scale $mu=2$ GeV with a high precision to study the temperature dependence of the chiral condensate and its disconnected susceptibility. Even with the Wilson-type quark action, we obtain the chiral condensate and its disconnected susceptibility showing a clear signal of pseudocritical temperature at T~190 MeV related to the chiral restoration crossover.
A novel method to study the bulk thermodynamics in lattice gauge theory is proposed on the basis of the Yang-Mills gradient flow with a fictitious time t. The energy density (epsilon) and the pressure (P) of SU(3) gauge theory at fixed temperature ar e calculated directly on 32^3 x (6,8,10) lattices from the thermal average of the well-defined energy-momentum tensor (T_{mu nu}^R(x)) obtained by the gradient flow. It is demonstrated that the continuum limit can be taken in a controlled manner from the t-dependence of the flowed data.
Recently, Harlander et al. [Eur. Phys. J. C {bf 78}, 944 (2018)] have computed the two-loop order (i.e., NNLO) coefficients in the gradient-flow representation of the energy--momentum tensor (EMT) in vector-like gauge theories. In this paper, we stud y the effect of the two-loop order corrections (and the three-loop order correction for the trace part of the EMT, which is available through the trace anomaly) on the lattice computation of thermodynamic quantities in quenched QCD. The use of the two-loop order coefficients generally reduces the $t$~dependence of the expectation values of the EMT in the gradient-flow representation, where $t$~is the flow time. With the use of the two-loop order coefficients, therefore, the $tto0$ extrapolation becomes less sensitive to the fit function, the fit range, and the choice of the renormalization scale; the systematic error associated with these factors is considerably reduced.
Fluctuations of conserved charges allow to study the chemical composition of hadronic matter. A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested the existence of missing strange resonances. To clarify this iss ue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the Quark Model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.
We calculate the electric dipole moment of the nucleon induced by the QCD theta term. We use the gradient flow to define the topological charge and use $N_f = 2+1$ flavors of dynamical quarks corresponding to pion masses of $700$, $570$, and $410$ Me V, and perform an extrapolation to the physical point based on chiral perturbation theory. We perform calculations at $3$ different lattice spacings in the range of $0.07~{rm fm} < a < 0.11$ fm at a single value of the pion mass, to enable control on discretization effects. We also investigate finite size effects using $2$ different volumes. A novel technique is applied to improve the signal-to-noise ratio in the form factor calculations. The very mild discretization effects observed suggest a continuum-like behavior of the nucleon EDM towards the chiral limit. Under this assumption our results read $d_{n}=-0.00152(71) bartheta e~text{fm}$ and $d_{p}=0.0011(10) bartheta e~text{fm}$. Assuming the theta term is the only source of CP violation, the experimental bound on the neutron electric dipole moment limits $left|barthetaright| < 1.98times 10^{-10}$ ($90%$ CL). A first attempt at calculating the nucleon Schiff moment in the continuum resulted in $S_{p} = 0.50(59)times 10^{-4} bartheta e~text{fm}^3$ and $S_{n} = -0.10(43)times 10^{-4} bartheta e~text{fm}^3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا