ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractor networks and memory replay of phase coded spike patterns

197   0   0.0 ( 0 )
 نشر من قبل Ferdinando Giacco
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the storage and retrieval capacity in a recurrent neural network of spiking integrate and fire neurons. In the model we distinguish between a learning mode, during which the synaptic connections change according to a Spike-Timing Dependent Plasticity (STDP) rule, and a recall mode, in which connections strengths are no more plastic. Our findings show the ability of the network to store and recall periodic phase coded patterns a small number of neurons has been stimulated. The self sustained dynamics selectively gives an oscillating spiking activity that matches one of the stored patterns, depending on the initialization of the network.



قيم البحث

اقرأ أيضاً

We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-ba sed learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing dependent plasticity (STDP). We find that, after learning, the spontaneous dynamics of the network replay one of the stored dynamical patterns, depending on the network initialization. We study the network capacity as a function of topology, and find that a small- world-like topology may be optimal, as a compromise between the high wiring cost of long range connections and the capacity increase.
We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activi ty of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.
A fundamental problem in neuroscience is to understand how sequences of action potentials (spikes) encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the t otal number of spikes fired (spike rate), recent studies of sensory and motor activity have shown that far more information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information carried by spike timing actually plays a causal role in brain function. Here we demonstrate how a precise spike timing code is read out downstream by the muscles to control behavior. We provide both correlative and causal evidence to show that the nervous system uses millisecond-scale variations in the timing of spikes within multi-spike patterns to regulate a relatively simple behavior - respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision, and that significant improvements in applications, such as neural prosthetic devices, can be achieved by using precise spike timing information.
A good understanding of how neurons use electrical pulses (i.e, spikes) to encode the signal information remains elusive. Analyzing spike sequences generated by individual neurons and by two coupled neurons (using the stochastic FitzHugh-Nagumo model ), recent theoretical studies have found that the relative timing of the spikes can encode the signal information. Using a symbolic method to analyze the spike sequence, preferred and infrequent spike patterns were detected, whose probabilities vary with both, the amplitude and the frequency of the signal. To investigate if this encoding mechanism is plausible also for neuronal ensembles, here we analyze the activity of a group of neurons, when they all perceive a weak periodic signal. We find that, as in the case of one or two coupled neurons, the probabilities of the spike patterns, now computed from the spike sequences of all the neurons, depend on the signals amplitude and period, and thus, the patterns probabilities encode the information of the signal. We also find that the resonances with the period of the signal or with the noise level are more pronounced when a group of neurons perceive the signal, in comparison with when only one or two coupled neurons perceive it. Neuronal coupling is beneficial for signal encoding as a group of neurons is able to encode a small-amplitude signal, which could not be encoded when it is perceived by just one or two coupled neurons. Interestingly, we find that for a group of neurons, just a few connections with one another can significantly improve the encoding of small-amplitude signals. Our findings indicate that information encoding in preferred and infrequent spike patterns is a plausible mechanism that can be employed by neuronal populations to encode weak periodic inputs, exploiting the presence of neural noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا