ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Avalanches at the Critical Point between Replay and Non-Replay of Spatiotemporal Patterns

147   0   0.0 ( 0 )
 نشر من قبل Silvia Scarpetta
 تاريخ النشر 2013
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.



قيم البحث

اقرأ أيضاً

We analyse the storage and retrieval capacity in a recurrent neural network of spiking integrate and fire neurons. In the model we distinguish between a learning mode, during which the synaptic connections change according to a Spike-Timing Dependent Plasticity (STDP) rule, and a recall mode, in which connections strengths are no more plastic. Our findings show the ability of the network to store and recall periodic phase coded patterns a small number of neurons has been stimulated. The self sustained dynamics selectively gives an oscillating spiking activity that matches one of the stored patterns, depending on the initialization of the network.
Replay is the reactivation of one or more neural patterns, which are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated into deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this paper, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be utilized to improve artificial neural networks.
We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing dependent plasticity (STDP). We find that, after learning, the spontaneous dynamics of the network replay one of the stored dynamical patterns, depending on the network initialization. We study the network capacity as a function of topology, and find that a small- world-like topology may be optimal, as a compromise between the high wiring cost of long range connections and the capacity increase.
161 - Dietmar Plenz 2005
It is shown that, contrary to the claims in a recent letter by Haldeman and Beggs (PRL, 94, 058101, 2005), the branching ratio in epileptic cortical cultures is smaller than one. In addition, and also in contrast to claims made in that paper, the num ber of metastable states is not significantly different between cortical cultures in the critical state and cultures made epileptic using picrotoxin.
Deep learning has achieved remarkable successes in solving challenging reinforcement learning (RL) problems when dense reward function is provided. However, in sparse reward environment it still often suffers from the need to carefully shape reward f unction to guide policy optimization. This limits the applicability of RL in the real world since both reinforcement learning and domain-specific knowledge are required. It is therefore of great practical importance to develop algorithms which can learn from a binary signal indicating successful task completion or other unshaped, sparse reward signals. We propose a novel method called competitive experience replay, which efficiently supplements a sparse reward by placing learning in the context of an exploration competition between a pair of agents. Our method complements the recently proposed hindsight experience replay (HER) by inducing an automatic exploratory curriculum. We evaluate our approach on the tasks of reaching various goal locations in an ant maze and manipulating objects with a robotic arm. Each task provides only binary rewards indicating whether or not the goal is achieved. Our method asymmetrically augments these sparse rewards for a pair of agents each learning the same task, creating a competitive game designed to drive exploration. Extensive experiments demonstrate that this method leads to faster converge and improved task performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا