ﻻ يوجد ملخص باللغة العربية
A good understanding of how neurons use electrical pulses (i.e, spikes) to encode the signal information remains elusive. Analyzing spike sequences generated by individual neurons and by two coupled neurons (using the stochastic FitzHugh-Nagumo model), recent theoretical studies have found that the relative timing of the spikes can encode the signal information. Using a symbolic method to analyze the spike sequence, preferred and infrequent spike patterns were detected, whose probabilities vary with both, the amplitude and the frequency of the signal. To investigate if this encoding mechanism is plausible also for neuronal ensembles, here we analyze the activity of a group of neurons, when they all perceive a weak periodic signal. We find that, as in the case of one or two coupled neurons, the probabilities of the spike patterns, now computed from the spike sequences of all the neurons, depend on the signals amplitude and period, and thus, the patterns probabilities encode the information of the signal. We also find that the resonances with the period of the signal or with the noise level are more pronounced when a group of neurons perceive the signal, in comparison with when only one or two coupled neurons perceive it. Neuronal coupling is beneficial for signal encoding as a group of neurons is able to encode a small-amplitude signal, which could not be encoded when it is perceived by just one or two coupled neurons. Interestingly, we find that for a group of neurons, just a few connections with one another can significantly improve the encoding of small-amplitude signals. Our findings indicate that information encoding in preferred and infrequent spike patterns is a plausible mechanism that can be employed by neuronal populations to encode weak periodic inputs, exploiting the presence of neural noise.
Neural coding is a field of study that concerns how sensory information is represented in the brain by networks of neurons. The link between external stimulus and neural response can be studied from two parallel points of view. The first, neural enco
Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output conne
The role of synchronous firing in sensory coding and cognition remains controversial. While studies, focusing on its mechanistic consequences in attentional tasks, suggest that synchronization dynamically boosts sensory processing, others failed to f
Background: Spike trains of multiple neurons can be analyzed following the summed population (SP) or the labeled line (LL) hypothesis. Responses to external stimuli are generated by a neuronal population as a whole or the individual neurons have enco
A fundamental problem in neuroscience is to understand how sequences of action potentials (spikes) encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the t