ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale-dependent competing interactions: sign reversal of the average persistent current

371   0   0.0 ( 0 )
 نشر من قبل Entin-Wohlman
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction-induced orbital magnetic response of a nanoscale system, modeled by the persistent current in a ring geometry, is evaluated for a system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fr{o}hlich interactions is crucial. The diamagnetic response of the large superconductor may become paramagnetic when the finite-size-determined Thouless energy is larger than or on the order of the Debye energy.

قيم البحث

اقرأ أيضاً

136 - S. Hikino , M. Mori , S. Takahashi 2009
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting phase dependent current, i.e., Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs with thickness of the FM layer due to the 0-$pi$ transition characteristic to the ferromagnetic Josephson junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak reverses due to the 0-$pi$ transition and disappears near the 0-$pi$ transition point. The discontinuous jump in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the conventional ones.
103 - M. Houzet 2010
We introduce a variant of the replica trick within the nonlinear sigma model that allows calculating the distribution function of the persistent current. In the diffusive regime, a Gaussian distribution is derived. This result holds in the presence o f local interactions as well. Breakdown of the Gaussian statistics is predicted for the tails of the distribution function at large deviations.
124 - A. Komnik , G. W. Langhanke 2013
We develop a method for calculation of charge transfer statistics of persistent current in nanostructures in terms of the cumulant generating function (CGF) of transferred charge. We consider a simply connected one-dimensional system (a wire) and dev elop a procedure for the calculation of the CGF of persistent currents when the wire is closed into a ring via a weak link. For the non-interacting system we derive a general formula in terms of the two-particle Greens functions. We show that, contrary to the conventional tunneling contacts, the resulting cumulant generating function has a doubled periodicity as a function of the counting field. We apply our general formula to short tight-binding chains and show that the resulting CGF perfectly reproduces the known evidence for the persistent current. Its second cumulant turns out to be maximal at the switching points and vanishes identically at zero temperature. Furthermore, we apply our formalism for a computation of the charge transfer statistics of genuinely interacting systems. First we consider a ring with an embedded Anderson impurity and employing a self-energy approximation find an overall suppression of persistent current as well as of its noise. Finally, we compute the charge transfer statistics of a double quantum dot system in the deep Kondo limit using an exact analytical solution of the model at the Toulouse point. We analyze the behaviour of the resulting cumulants and compare them with those of a noninteracting double quantum dot system and find several pronounced differences, which can be traced back to interaction effects.
The interplay between intrinsic and surface/interface-induced magnetic anisotropies strongly in- fluences magnetization processes in nanomagnetic systems. We develop a micromagnetic theory to describe the field-driven reorientation in nanomagnets wit h cubic and uniaxial anisotropies. Spin configurations in competing phases and parameters of accompanying multidomain states are calculated as functions of the applied field and the magnetic anisotropies. The constructed magnetic phase diagrams allow to classify different types of the magnetization reversal and to provide detailed analysis of the switching processes in magnetic nanostructures. The calculated magnetization profiles of isolated domain walls show that the equilibrium parameters of such walls are extremely sensitive to applied magnetic field and values of the competing anisotropies and can vary in a broad range. For nanolayers with perpendicular anisotropy the geometrical parameters of stripe domains have been calculated as functions of a bias field. The results are applied to analyse the magnetization processes as observed in various nanosystems with competing anisotropies, mainly, in diluted magnetic semiconductor films (Ga,Mn)As.
The diversity of various manganese types and its complexes in the Mn-doped ${rm A^{III}B^V}$ semiconductor structures leads to a number of intriguing phenomena. Here we show that the interplay between the ordinary substitutional Mn acceptors and inte rstitial Mn donors as well as donor-acceptor dimers could result in a reversal of electron magnetization. In our all-optical scheme the impurity-to-band excitation via the Mn dimers results in direct orientation of the ionized Mn-donor $d$ shell. A photoexcited electron is then captured by the interstitial Mn and the electron spin becomes parallel to the optically oriented $d$ shell. That produces, in the low excitation regime, the spin-reversal electron magnetization. As the excitation intensity increases the capture by donors is saturated and the polarization of delocalized electrons restores the normal average spin in accordance with the selection rules. A possibility of the experimental observation of the electron spin reversal by means of polarized photoluminescence is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا