ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution function of persistent current

129   0   0.0 ( 0 )
 نشر من قبل M. Houzet
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Houzet




اسأل ChatGPT حول البحث

We introduce a variant of the replica trick within the nonlinear sigma model that allows calculating the distribution function of the persistent current. In the diffusive regime, a Gaussian distribution is derived. This result holds in the presence of local interactions as well. Breakdown of the Gaussian statistics is predicted for the tails of the distribution function at large deviations.


قيم البحث

اقرأ أيضاً

We have measured the persistent current in individual normal metal rings over a wide range of magnetic fields. From this data, we extract the first six cumulants of the single-ring persistent current distribution. Our results are consistent with the theoretical prediction that this distribution should be nearly Gaussian (i.e., that these cumulants should be nearly zero) for diffusive metallic rings. This measurement highlights the particular sensitivity of persistent current to the mesoscopic fluctuations within a single coherent volume.
162 - A. Komnik , G. W. Langhanke 2013
We develop a method for calculation of charge transfer statistics of persistent current in nanostructures in terms of the cumulant generating function (CGF) of transferred charge. We consider a simply connected one-dimensional system (a wire) and dev elop a procedure for the calculation of the CGF of persistent currents when the wire is closed into a ring via a weak link. For the non-interacting system we derive a general formula in terms of the two-particle Greens functions. We show that, contrary to the conventional tunneling contacts, the resulting cumulant generating function has a doubled periodicity as a function of the counting field. We apply our general formula to short tight-binding chains and show that the resulting CGF perfectly reproduces the known evidence for the persistent current. Its second cumulant turns out to be maximal at the switching points and vanishes identically at zero temperature. Furthermore, we apply our formalism for a computation of the charge transfer statistics of genuinely interacting systems. First we consider a ring with an embedded Anderson impurity and employing a self-energy approximation find an overall suppression of persistent current as well as of its noise. Finally, we compute the charge transfer statistics of a double quantum dot system in the deep Kondo limit using an exact analytical solution of the model at the Toulouse point. We analyze the behaviour of the resulting cumulants and compare them with those of a noninteracting double quantum dot system and find several pronounced differences, which can be traced back to interaction effects.
We demonstrate theoretically that an off-resonant circularly polarized electromagnetic field can induce a persistent current in carbon nanotubes, which corresponds to electron rotation about the nanotube axis. As a consequence, the nanotubes acquire magnetic moment along the axis, which depends on their crystal structure and can be detected in state-of-the-art measurements. This effect and related phenomena are analyzed within the developed Floquet theory describing the electronic properties of the nanotubes irradiated by the field.
The interaction-induced orbital magnetic response of a nanoscale system, modeled by the persistent current in a ring geometry, is evaluated for a system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fr{o}hlich i nteractions is crucial. The diamagnetic response of the large superconductor may become paramagnetic when the finite-size-determined Thouless energy is larger than or on the order of the Debye energy.
We measure the full distribution of current fluctuations in a single-electron transistor with a controllable bistability. The conductance switches randomly between two levels due to the tunneling of single electrons in a separate single-electron box. The electrical fluctuations are detected over a wide range of time scales and excellent agreement with theoretical predictions is found. For long integration times, the distribution of the time-averaged current obeys the large-deviation principle. We formulate and verify a fluctuation relation for the bistable region of the current distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا