ﻻ يوجد ملخص باللغة العربية
Comparison of linewidths of spectral line profiles of ions and neutral molecules have been recently used to estimate the strength of the magnetic field in turbulent star-forming regions. However, the ion (HCO+) and neutral (HCN) species used in such studies may not be necessarily co-evolving at every scale and density and may thus not trace the same regions. Here, we use coupled chemical/dynamical models of evolving prestellar molecular cloud cores including non-equilibrium chemistry, with and without magnetic fields, to study the spatial distribution of HCO+ and HCN, which have been used in observations of spectral linewidth differences to date. In addition, we seek new ion-neutral pairs that are good candidates for such observations because they have similar evolution and are approximately co-spatial in our models. We identify three such good candidate pairs: HCO+/NO, HCO+/CO, and NO+/NO.
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and th
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t
We study the abundance of CCH in prestellar cores both because of its role in the chemistry and because it is a potential probe of the magnetic field. We also consider the non-LTE behaviour of the N=1-0 and N=2-1 transitions of CCH and improve curren
We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and
The recent unexpected detection of terrestrial complex organic molecules in the cold (~ 10 K) gas has cast doubts on the commonly accepted formation mechanisms of these species. Standard gas-phase mechanisms are inefficient and tend to underproduce t