ﻻ يوجد ملخص باللغة العربية
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales $sim~$1~kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.
We study four lines of sight that probe the transition from diffuse molecular gas to molecular cloud material in Taurus. Measurements of atomic and molecular absorption are used to infer the distribution of species and the physical conditions toward
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and th
The molecular clouds Lupus 1, 3 and 4 were mapped with the Mopra telescope at 3 and 12 mm. Emission lines from high density molecular tracers were detected, i.e. NH$_3$ (1,1), NH$_3$ (2,2), N$_2$H$^+$ (1-0), HC$_3$N (3-2), HC$_3$N (10-9), CS (2-1), C
We use ALMA and IRAM 30-m telescope data to investigate the relationship between the spectroscopically-traced dense gas fraction and the cloud-scale (120 pc) molecular gas surface density in five nearby, star-forming galaxies. We estimate the dense g
We present the results of a large-scale survey of the very dense gas in the Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas found in pre- and protostellar cor