ﻻ يوجد ملخص باللغة العربية
We study the abundance of CCH in prestellar cores both because of its role in the chemistry and because it is a potential probe of the magnetic field. We also consider the non-LTE behaviour of the N=1-0 and N=2-1 transitions of CCH and improve current estimates of the spectroscopic constants of CCH. We used the IRAM 30m radiotelescope to map the N=1-0 and N=2-1 transitions of CCH towards the prestellar cores L1498 and CB246. Towards CB246, we also mapped the 1.3 mm dust emission, the J=1-0 transition of N2H+ and the J=2-1 transition of C18O. We used a Monte Carlo radiative transfer program to analyse the CCH observations of L1498. We derived the distribution of CCH column densities and compared with the H2 column densities inferred from dust emission. We find that while non-LTE intensity ratios of different components of the N=1-0 and N=2-1 lines are present, they are of minor importance and do not impede CCH column density determinations based upon LTE analysis. Moreover, the comparison of our Monte-Carlo calculations with observations suggest that the non-LTE deviations can be qualitatively understood. For L1498, our observations in conjunction with the Monte Carlo code imply a CCH depletion hole of radius 9 x 10^{16} cm similar to that found for other C-containing species. We briefly discuss the significance of the observed CCH abundance distribution. Finally, we used our observations to provide improved estimates for the rest frequencies of all six components of the CCH(1-0) line and seven components of CCH(2-1). Based on these results, we compute improved spectroscopic constants for CCH. We also give a brief discussion of the prospects for measuring magnetic field strengths using CCH.
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin
We studied the abundance of HCN, H13CN, and HN13C in a sample of prestellar cores, in order to search for species associated with high density gas. We used the IRAM 30m radiotelescope to observe along the major and the minor axes of L1498, L1521E, an
Young massive stars are usually found embedded in dense massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the very early formation
Determining the structure of and the velocity field in prestellar cores is essential to understanding protostellar evolution.} {We have observed the dense prestellar cores L 1544 and L 183 in the $N = 1 to 0$ rotational transition of CN and thcn in o
We investigate the amplification of turbulence through gravitational contraction of the primordial gas in minihalos. We perform numerical simulations to follow the cloud collapse, assuming polytropic equations of state for different initial turbulent