ﻻ يوجد ملخص باللغة العربية
We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wavefunction. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH2(X)] with He atoms. To this end, two highly accurate three-dimensional potential energy surfaces (PESs) of the He-CH2(X) complex are developed using the state-of-the-art CCSD(T) method and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH2, CHD, and CD2 molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 uK -- 1 K) and magnetic fields (0.01 - 1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH2(X) molecules in a magnetic trap. Furthermore, we find that ortho-CH2 undergoes collision-induced spin relaxation much more slowly than para-CH2, which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.
We study collisions between neutral, deuterated ammonia molecules (ND$_3$) stored in a 50 cm diameter synchrotron and argon atoms in co-propagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By stori
We present an experimental study on the rotational inelastic scattering of OH ($X^2Pi_{3/2}, J=3/2, f$) radicals with He and D$_2$ at collision energies between 100 and 500 cm$^{-1}$ in a crossed beam experiment. The OH radicals are state selected an
Whereas atom-molecule collisions have been studied with complete quantum state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cros
Radium compounds have attracted recently considerable attention due to both development of experimental techniques for high-precision laser spectroscopy of molecules with short-lived nuclei and amenability of certain radium compounds for direct cooli
The relative orientation of colliding molecules plays a key role in determining the rates of chemical processes. Here we examine in detail a prototypical example: rotational quenching of HD in cold collisions with H2. We show that the rotational quen