ﻻ يوجد ملخص باللغة العربية
We study collisions between neutral, deuterated ammonia molecules (ND$_3$) stored in a 50 cm diameter synchrotron and argon atoms in co-propagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) The collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross-section for $mathrm{ND}_3+mathrm{Ar}$ collisions in the energy range of 40-140 cm$^{-1}$, with a resolution of 5-10 cm$^{-1}$ and an uncertainty of 7-15%. Our measurements are in good agreement with theoretical scattering calculations.
The relative orientation of colliding molecules plays a key role in determining the rates of chemical processes. Here we examine in detail a prototypical example: rotational quenching of HD in cold collisions with H2. We show that the rotational quen
We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the mul
Elastic and spin-changing inelastic collision cross sections are presented for cold and ultracold magnetically trapped NH. The cross sections are obtained from coupled-channel scattering calculations as a function of energy and magnetic field. We spe
We present elastic and inelastic spin-changing cross sections for cold and ultracold NH($X,^3Sigma^-$) + NH($X,^3Sigma^-$) collisions, obtained from full quantum scattering calculations on an accurate textit{ab initio} quintet potential-energy surfac