ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio study and assignment of electronic states in molecular RaCl

147   0   0.0 ( 0 )
 نشر من قبل Timur A. Isaev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radium compounds have attracted recently considerable attention due to both development of experimental techniques for high-precision laser spectroscopy of molecules with short-lived nuclei and amenability of certain radium compounds for direct cooling with lasers. Currently, radium monofluoride (RaF) is one of the most studied molecules among the radium compounds, both theoretically and recently also experimentally. Complementary studies of further diatomic radium derivatives are highly desired to assess the influence of chemical substitution on diverse molecular parameters, especially on those connected with laser cooling, such as vibronic transition probabilities, and those related to violations of fundamental symmetries. In this article high-precision emph{ab initio} studies of electronic and vibronic levels of diatomic radium monochloride (RaCl) are presented. Recently developed approaches for treating electronic correlation with Fock-space coupled cluster methods are applied for this purpose. Theoretical results are compared to an early experimental investigation by Lagerqvist and used to partially reassign the experimentally observed transitions and molecular electronic levels of RaCl. Effective constants of $mathcal{P}$-odd hyperfine interaction $W_{rm{a}}$ and $mathcal{P,T}$-odd scalar-pseudoscalar nucleus-electron interaction $W_{rm{s}}$ in the ground electronic state of RaCl are estimated within the framework of a quasirelativistic Zeroth-Order Regular Approximation approach and compared to parameters in RaF and RaOH.

قيم البحث

اقرأ أيضاً

Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a qua ntum computer-based AIMD method is presented. The electronic energies are calculated on a quantum computer using the variational quantum eigensolver (VQE) method. We compute the energy gradients numerically using the Hellmann-Feynman theorem, finite differences, and a correlated sampling technique. Our method only requires additional classical calculations of electron integrals for each degree of freedom, without any additional computations on a quantum computer beyond the initial VQE run. To achieve comparable accuracy, our gradient calculation method requires three to five orders of magnitude fewer measurements than other brute force methods without correlated sampling. As a proof of concept, AIMD dynamics simulations are demonstrated for the H2 molecule on IBM quantum devices. To the best of our knowledge, it is the first successful attempt to run AIMD on quantum devices for a chemical system. In addition, we demonstrate the validity of the method for larger molecules using full configuration interaction (FCI) wave functions. As quantum hardware and noise mitigation techniques continue to improve, the method can be utilized for studying larger molecular and material systems.
We performed ab initio lattice-dynamics calculations of frame-cluster dodecaborides ZrB12 and LuB12. As a whole, our calculated phonon frequencies and atom-projected density of states are consistent with the results of available first-principles calc ulations and experimental measurements. So we conclude that the ab initio DFT approach is quite appropriate to study the sufficiently subtle physics of these compounds. Our experiment-independent calculations provide an explicit quantitative confirmation of mixing the eigenvectors of boron and metal vibrations, which was previously observed in experiments.
140 - L. De Santis , P. Carloni 1999
In serine proteases (SPs), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab ini tio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
Ultrafast dynamics in chemical systems provide a unique access to fundamental processes at the molecular scale. A proper description of such systems is often very challenging because of the quantum nature of the problem. The concept of matrix product states (MPS), however, has proven its performance in describing such correlated quantum system in recent years for a wide range of applications. In this work, we continue the development of the MPS approach to study ultrafast electron dynamics in quantum chemical systems. The method combines time evolution schemes, such as fourth-order Runge-Kutta and Krylov space time evolution, with MPS, in order to solve the time-dependent Schrodinger equation efficiently. This allows for describing electron dynamics in molecules on a full configurational interaction (CI) level for a few femtoseconds after excitation. As a benchmark, we compare MPS based calculations to full CI calculations for a chain of hydrogen atoms and for the water molecule. Krylov space time evolution is in particular suited for the MPS approach, as it provides a wide range of opportunities to be adjusted to the reduced MPS dimension case. Finally, we apply the MPS approach to describe charge migration effects in iodoacetylene and find direct agreement between our results and experimental observations.
Photodissociation by ultraviolet radiation is the key destruction pathway for CS in photon-dominated regions, such as diffuse clouds. However, the large uncertainties of photodissociation cross sections and rates of CS, resulting from a lack of both laboratory experiments and theoretical calculations, limit the accuracy of calculated abundances of S-bearing molecules by modern astrochemical models. Here we show a detailed textit{ab initio} study of CS photodissociation. Accurate potential energy curves of CS electronic states were obtained by choosing an active space CAS(8,10) in MRCI+Q/aug-cc-pV(5+d)Z calculation with additional diffuse functions, with a focus on the (B) and (C,^1Sigma^+) states. Cross sections for both direct photodissociation and predissociation from the vibronic ground state were calculated by applying the coupled-channel method. We found that the (C-X) ((0-0)) transition has extremely strong absorption due to a large transition dipole moment in the Franck-Condon region and the upper state is resonant with several triplet states via spin-orbit couplings, resulting in predissociation to the main atomic products C ((^3P)) and S ((^1D)). Our new calculations show the photodissociation rate under the standard interstellar radiation field is (2.9ee{-9}),s(^{-1}), with a 57% contribution from (C-X) ((0-0)) transition. This value is larger than that adopted by the Leiden photodissociation and photoionization database by a factor of 3.0. Our accurate textit{ab initio} calculations will allow more secure determination of S-bearing molecules in astrochemical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا