ﻻ يوجد ملخص باللغة العربية
Introduced recently, an n-crossing is a singular point in a projection of a link at which n strands cross such that each strand travels straight through the crossing. We introduce the notion of an ubercrossing projection, a knot projection with a single n-crossing. Such a projection is necessarily composed of a collection of loops emanating from the crossing. We prove the surprising fact that all knots have a special type of ubercrossing projection, which we call a petal projection, in which no loops contain any others. The rigidity of this form allows all the information about the knot to be concentrated in a permutation corresponding to the levels at which the strands lie within the crossing. These ideas give rise to two new invariants for a knot K: the ubercrossing number u(K), and petal number p(K). These are the least number of loops in any ubercrossing or petal projection of K, respectively. We relate u(K) and p(K) to other knot invariants, and compute p(K) for several classes of knots, including all knots of nine or fewer crossings.
Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are d
Knot Floer homology is a knot invariant defined using holomorphic curves. In more recent work, taking cues from bordered Floer homology,the authors described another knot invariant, called bordered knot Floer homology, which has an explicit algebraic
We prove that any $11$-colorable knot is presented by an $11$-colored diagram where exactly five colors of eleven are assigned to the arcs. The number five is the minimum for all non-trivially $11$-colored diagrams of the knot. We also prove a similar result for any $11$-colorable ribbon $2$-knot.
In this article we discuss applications of neural networks to recognising knots and, in particular, to the unknotting problem. One of motivations for this study is to understand how neural networks work on the example of a problem for which rigorous