ترغب بنشر مسار تعليمي؟ اضغط هنا

Knot projections with a single multi-crossing

128   0   0.0 ( 0 )
 نشر من قبل Colin Adams
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Introduced recently, an n-crossing is a singular point in a projection of a link at which n strands cross such that each strand travels straight through the crossing. We introduce the notion of an ubercrossing projection, a knot projection with a single n-crossing. Such a projection is necessarily composed of a collection of loops emanating from the crossing. We prove the surprising fact that all knots have a special type of ubercrossing projection, which we call a petal projection, in which no loops contain any others. The rigidity of this form allows all the information about the knot to be concentrated in a permutation corresponding to the levels at which the strands lie within the crossing. These ideas give rise to two new invariants for a knot K: the ubercrossing number u(K), and petal number p(K). These are the least number of loops in any ubercrossing or petal projection of K, respectively. We relate u(K) and p(K) to other knot invariants, and compute p(K) for several classes of knots, including all knots of nine or fewer crossings.



قيم البحث

اقرأ أيضاً

Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanakis trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.
81 - Tetsuya Ito 2021
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are d etermined by their complements. We also apply the result for the cosmetic crossing conjecture.
Knot Floer homology is a knot invariant defined using holomorphic curves. In more recent work, taking cues from bordered Floer homology,the authors described another knot invariant, called bordered knot Floer homology, which has an explicit algebraic and combinatorial construction. In the present paper, we extend the holomorphic theory to bordered Heegaard diagrams for partial knot projections, and establish a pairing result for gluing such diagrams, in the spirit of the pairing theorem of bordered Floer homology. After making some model calculations, we obtain an identification of a variant of knot Floer homology with its algebraically defined relative. These results give a fast algorithm for computing knot Floer homology.
We prove that any $11$-colorable knot is presented by an $11$-colored diagram where exactly five colors of eleven are assigned to the arcs. The number five is the minimum for all non-trivially $11$-colored diagrams of the knot. We also prove a similar result for any $11$-colorable ribbon $2$-knot.
In this article we discuss applications of neural networks to recognising knots and, in particular, to the unknotting problem. One of motivations for this study is to understand how neural networks work on the example of a problem for which rigorous mathematical algorithms for its solution are known. We represent knots by rectangular Dynnikov diagrams and apply neural networks to distinguish a given diagram class from the given finite families of topological types. The data presented to the program is generated by applying Dynnikov moves to initial samples. The significance of using these diagrams and moves is that in this context the problem of determining whether a diagram is unknotted is a finite search of a bounded combinatorial space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا