ﻻ يوجد ملخص باللغة العربية
Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that is the minimal number of double points of chords of a chord diagram. Cross chord numbers induce a strong (1, 3) invariant. We show that Hanakis trivializing number is a weak (1, 3) invariant. We give a complete classification of knot projections having trivializing number two up to the first flat Reidemeister moves using cross chord numbers and the positive resolutions of double points. Two knot projections with trivializing number two are both weak (1, 3) homotopy equivalent and strong (1, 3) homotopy equivalent if and only if they can be related by only the first flat Reidemeister moves. Finally, we determine the strong (1, 3) homotopy equivalence class containing the trivial knot projection and other classes of knot projections.
Introduced recently, an n-crossing is a singular point in a projection of a link at which n strands cross such that each strand travels straight through the crossing. We introduce the notion of an ubercrossing projection, a knot projection with a sin
This paper studies the moduli space of solutions to the Bogomolny equation on R^3 with a certain type of knot singularity. For technical reasons, I have to assume the monodromy along the meridian of the knot lies in (0, 1/8) or in (3/8, 1/2) and I do
We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to
We show that the problem of determining the genus of a knot in a fixed compact, orientable three-dimensional manifold lies in NP. This answers a question asked by Agol, Hass, and Thurston in 2002. Previously, this was known for rational homology three-spheres, by the work of the first author.
In this paper, sufficient conditions for contact $(+1)$-surgeries along Legendrian knots in contact rational homology 3-spheres to have vanishing contact invariants or to be overtwisted are given. They can be applied to study contact $(pm1)$-surgerie