ﻻ يوجد ملخص باللغة العربية
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are determined by their complements. We also apply the result for the cosmetic crossing conjecture.
We bound the value of the Casson invariant of any integral homology 3-sphere $M$ by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group $T$, of the element of $T$ associated to any Heegaard splittin
We show that one of the Cappell-Shaneson knot complements admits an extraordinarily small triangulation, containing only two 4-dimensional simplices.
We show that all nontrivial members of the Kinoshita-Terasaka and Conway knot families satisfy the purely cosmetic surgery conjecture.
We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3-manifolds split along a torus.
Given a rank 2 hermitian bundle over a 3-manifold that is non-trivial admissible in the sense of Floer, one defines its Casson invariant as half the signed count of its projectively flat connections, suitably perturbed. We show that the 2-divisibilit