ترغب بنشر مسار تعليمي؟ اضغط هنا

Increased surface flashover voltage in microfabricated devices

45   0   0.0 ( 0 )
 نشر من قبل Robin Sterling PhD
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the demand for improved performance in microfabricated devices, the necessity to apply greater electric fields and voltages becomes evident. When operating in vacuum, the voltage is typically limited by surface flashover forming along the surface of a dielectric. By modifying the fabrication process we have discovered it is possible to more than double the flashover voltage. Our finding has significant impact on the realization of next-generation micro- and nano-fabricated devices and for the fabrication of on-chip ion trap arrays for the realization of scalable ion quantum technology.

قيم البحث

اقرأ أيضاً

Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
We design and analyze a solid state qubit based on electron spin and controlled by electrical means. The coded qubit is composed of a three-electron complex in three tunable gated quantum dots. The two logical states of a qubit, |0L> and |1L>, reside in a degenerate subspace of total spin S=1/2 states. We demonstrate how applying voltages to specific gates changes the one-electron properties of the structure, and show how electron-electron interaction translates these changes into the manipulation of the two lowest energy states of the three-electron complex.
78 - Mohit Sood 2021
The presence of interface recombination in a complex multilayered thin-film solar structure causes a disparity between the internal open-circuit voltage (VOC,in), measured by photoluminescence, and the external open-circuit voltage (VOC,ex) i.e. an a dditional VOC deficit. Higher VOC,ex value aim require a comprehensive understanding of connection between VOC deficit and interface recombination. Here, a deep near-surface defect model at the absorber/buffer interface is developed for copper indium di-selenide solar cells grown under Cu excess conditions to explain the disparity between VOC,in and VOC,ex.. The model is based on experimental analysis of admittance spectroscopy and deep-level transient spectroscopy, which show the signature of deep acceptor defect. Further, temperature-dependent current-voltage measurements confirm the presence of near surface defects as the cause of interface recombination. The numerical simulations show strong decrease in the local VOC,in near the absorber/buffer interface leading to a VOC deficit in the device. This loss mechanism leads to interface recombination without a reduced interface bandgap or Fermi level pinning. Further, these findings demonstrate that the VOC,in measurements alone can be inconclusive and might conceal the information on interface recombination pathways, establishing the need for complementary techniques like temperature dependent current voltage measurements to identify the cause of interface recombination in the devices.
This study measures the voltage at which flashover occurs in compressed air for a variety of dielectric materials and lengths in a uniform field for DC voltages up to 100 kV. Statistical time lag is recorded and characterized, displaying a roughly ex ponential dependence on breakdown voltage. Of the materials tested, acrylic is observed to be the most resistant to flashover. These data are intended to facilitate the design of compressed-air insulated high voltage systems as an alternative to SF6 insulated systems.
We examine the possibility of using graphene nanoribbons (GNRs) with directly substituted chromium atoms as spintronic device. Using density functional theory, we simulate a voltage bias across a constructed GNR in a device setup, where a magnetic di mer has been substituted into the lattice. Through this first principles approach, we calculate the electronic and magnetic properties as a function of Hubbard U, voltage, and magnetic configuration. By calculating of the total energy of each magnetic configuration, we determine that initial antiferromagnetic ground state flips to a ferromagnetic state with applied bias. Mapping this transition point to the calculated conductance for the system reveals that there is a distinct change in conductance through the GNR, which indicates the possibility of a spin valve. We also show that this corresponds to a distinct change in the induced magnetization within the graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا