ترغب بنشر مسار تعليمي؟ اضغط هنا

Near surface defects: Cause of deficit between internal and external open-circuit voltage in solar cells

79   0   0.0 ( 0 )
 نشر من قبل Mohit Sood
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mohit Sood




اسأل ChatGPT حول البحث

The presence of interface recombination in a complex multilayered thin-film solar structure causes a disparity between the internal open-circuit voltage (VOC,in), measured by photoluminescence, and the external open-circuit voltage (VOC,ex) i.e. an additional VOC deficit. Higher VOC,ex value aim require a comprehensive understanding of connection between VOC deficit and interface recombination. Here, a deep near-surface defect model at the absorber/buffer interface is developed for copper indium di-selenide solar cells grown under Cu excess conditions to explain the disparity between VOC,in and VOC,ex.. The model is based on experimental analysis of admittance spectroscopy and deep-level transient spectroscopy, which show the signature of deep acceptor defect. Further, temperature-dependent current-voltage measurements confirm the presence of near surface defects as the cause of interface recombination. The numerical simulations show strong decrease in the local VOC,in near the absorber/buffer interface leading to a VOC deficit in the device. This loss mechanism leads to interface recombination without a reduced interface bandgap or Fermi level pinning. Further, these findings demonstrate that the VOC,in measurements alone can be inconclusive and might conceal the information on interface recombination pathways, establishing the need for complementary techniques like temperature dependent current voltage measurements to identify the cause of interface recombination in the devices.

قيم البحث

اقرأ أيضاً

Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
There is evidence that interface recombination in Cu2ZnSnS4 solar cells contributes to the open-circuit voltage deficit. Our hybrid density functional theory calculations suggest that electron-hole recombination at the Cu2ZnSnS4/CdS interface is caus ed by a deeper conduction band that slows electron extraction. In contrast, the bandgap is not narrowed for the Cu2ZnSnSe4/CdS interface, consistent with a lower open-circuit voltage deficit.
Graphene has shown great application opportunities in future nanoelectronic devices due to its outstanding electronic properties. Moreover, its impressive optical properties have been attracting the interest of researchers, and, recently, the photovo ltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we report the photovoltaic response of graphene-semiconductor junctions and the controlled open-circuit voltage (Voc) with varying numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces. The surface photovoltaic effects observed here show an electronic realignment in the depth direction in the FLG heterojunction systems, indicating future potential toward solar devices utilizing the excellent transparency and flexibility of FLG.
In organic bulk heterojunction solar cells, the open circuit voltage ($V_mathrm{oc}$) suffers from an ultra-high loss at low temperatures. In this work we investigate the origin of the loss through calculating the $V_mathrm{oc}-T$ plots with the devi ce model method systematically and comparing it with experimentally observed ones. When the energetic disorder is incorporated into the model by considering the disorder-suppressed and temperature-dependent charge carrier mobilities, it is found that for nonselective contacts the $V_mathrm{oc}$ reduces drastically under the low temperature regime, while for selective contacts the $V_mathrm{oc}$ keeps increasing with the decreasing temperature. The main reason is revealed that as the temperature decreases, the reduced mobilities give rise to low charge extraction efficiency and small bimolecular recombination rate for the photogenerated charge carriers, so that in the former case they can be extracted from the wrong electrode to form a leakage current which counteracts the photocurrent and increases quickly with voltage, leading to the anomalous reduction of $V_mathrm{oc}$. In addition, it is revealed that the charge generation rate is slow-varying with temperature and does not induce significant $V_mathrm{oc}$ loss. This work also provides a comprehensive picture for the $V_mathrm{oc}$ behavior under varying device working conditions.
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated hot carriers before they cool to the lattice temperature. Hot carrier solar ce lls have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا