ﻻ يوجد ملخص باللغة العربية
We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ layers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $Gamma$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator.
Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic sys
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin-orbit interaction in solids
Using scanning tunneling spectroscopy we have studied the effects of nitrogen gas exposure on the bismuth selenide density of states. We observe a shift in the Dirac point which is qualitatively consistent with theoretical modeling of nitrogen bindin
Three-dimensional topological insulators (3D-TIs) possess a specific topological order of electronic bands, resulting in gapless surface states via bulk-edge correspondence. Exotic phenomena have been realized in ferromagnetic TIs, such as the quantu
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p