ﻻ يوجد ملخص باللغة العربية
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin-orbit interaction in solids composed of heavy elements. Here, we study the composite particles -- chiral excitons -- formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical three-dimensional topological insulator (TI), Bi$_2$Se$_3$. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of meVs, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin-orbit coupling. A theoretical model based on such proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin-orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.
We perform ab-initio calculations on Bi$_mathrm{{Se}}$ antisite defects in the surface of Bi$_2$Se$_3$, finding strong low-energy defect resonances with a spontaneous ferromagnetism, fixed to an out-of-plane orientation due to an exceptional large ma
The influence of individual impurities of Fe on the electronic properties of topological insulator Bi$_2$Se$_3$ is studied by Scanning Tunneling Microscopy. The microscope tip is used in order to remotely charge/discharge Fe impurities. The charging
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi$_2$Se$_3$ ultrathin films. At two-dimensional limit, bulk electrons becomes quantized and the quan
We report the observation of quantum Hall effect (QHE) in a Bi$_2$Se$_3$ single crystal having carrier concentration ($n$) $sim1.13times10^{19}$cm$^{-3}$, three dimensional Fermi surface and bulk transport characteristics. The plateaus in Hall resist
Using circularly polarized light is an alternative to electronic ways for spin injection into materials. Spins are injected at a point of the light illumination, and then diffuse and spread radially due to the in-plane gradient of the spin density. T