ﻻ يوجد ملخص باللغة العربية
Josephson junctions fabricated on the surface of three-dimensional topological insulators (TI) show a few unusual properties distinct from conventional Josephson junctions. In these devices, the Josephson coupling and the supercurrent are mediated by helical metal, the two-dimensional surface of the TI. A line junction of this kind is known to support Andreev bound states at zero energy for phase bias pi, and consequently the so-called fractional ac Josephson effect. Motivated by recent experiments on TI-based Josephson junctions, here we describe a convenient algorithm to compute the bound state spectrum and the current-phase relation for junctions with finite length and width. We present analytical results for the bound state spectrum, and discuss the dependence of the current-phase relation on the length and width of the junction, the chemical potential of the helical metal, and temperature. A thorough understanding of the current-phase relation may help in designing topological superconducting qubits and manipulating Majorana fermions.
We present measurements of the current-phase relation (CPR) of Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions as a function of temperature. The CPR is determined by incorporating the junction into a superconducting loop coupled t
In this letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two dimensional helical metals such as on topological insulator surface state. We show that contrary to the usual superconducting-normal me
We study the Josephson current through a ferromagnetic trilayer, both in the diffusive and clean limits. For colinear (parallel or antiparallel) magnetizations in the layers, the Josephson current is small due to short range proximity effect in super
We present an exhaustive study of the coherent heat transport through superconductor-ferromagnet(S-F) Josephson junctions including a spin-filter (I$_{sf}$) tunneling barrier. By using the quasiclassical Keldysh Greens function technique we derive a
We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l