ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the Current-Phase Relation of SFS pi-Josephson junctions

122   0   0.0 ( 0 )
 نشر من قبل Sergey Frolov
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of the current-phase relation (CPR) of Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions as a function of temperature. The CPR is determined by incorporating the junction into a superconducting loop coupled to a dc SQUID, allowing measurement of the junction phase difference. Junctions fabricated with a thin (~ 22 nm) barrier of Cu0.47Ni0.53 sandwiched between Nb electrodes exhibit a re-entrant critical current with temperature, vanishing at T =T_pi ~ 2-4 K. We find that the critical current is negative for T < T_pi, indicating that the junction is a pi-Josephson junction. We find no evidence for second-order Josephson tunneling near T_pi in the CPR predicted by several theories.

قيم البحث

اقرأ أيضاً

Current state of the art devices for detecting and manipulating Majorana fermions commonly consist of networks of Majorana wires and tunnel junctions. We study a key ingredient of these networks - a topological Josephson junction with charging energy - and pinpoint crucial features for device implementation. The phase dependent tunneling term contains both the usual 2pi-periodic Josephson term and a 4pi-periodic Majorana tunneling term representing the coupling between Majoranas on both sides of the junction. In non-topological junctions when the charging energy is small compared to the Josephson tunneling scale the low energy physics is described by 2pi phase slips. By contrast, in a topological junction, due to the 4pi periodicity of the tunneling term it is usually expected that only 4pi phase slips are possible while 2pi phase slips are suppressed. However, we find that if the ratio between the strengths of the Majorana assisted tunneling and the Josephson tunneling is small, as is likely to be the case for many setups, 2pi phase slips occur and may even dominate the low energy physics. In this limit one can view the 4pi phase slips as a pair of 2pi phase slips with arbitrarily large separation. We provide an effective descriptions of the system in terms of 2pi and 4pi phase slips valid for all values of the tunneling ratio. Comparing the spectrum of the effective models with numerical simulations we determine the cross-over between the 4pi phase slip regime to 2pi phase slip dominated regime. We also discuss the role of the charging energy as well as the implications of our results on the dissipative phase transitions expected in such a system.
Josephson junctions fabricated on the surface of three-dimensional topological insulators (TI) show a few unusual properties distinct from conventional Josephson junctions. In these devices, the Josephson coupling and the supercurrent are mediated by helical metal, the two-dimensional surface of the TI. A line junction of this kind is known to support Andreev bound states at zero energy for phase bias pi, and consequently the so-called fractional ac Josephson effect. Motivated by recent experiments on TI-based Josephson junctions, here we describe a convenient algorithm to compute the bound state spectrum and the current-phase relation for junctions with finite length and width. We present analytical results for the bound state spectrum, and discuss the dependence of the current-phase relation on the length and width of the junction, the chemical potential of the helical metal, and temperature. A thorough understanding of the current-phase relation may help in designing topological superconducting qubits and manipulating Majorana fermions.
We present our new fabrication Process for Superconductor Electronics (PSE2) that integrates two (2) layers of Josephson junctions in a fully planarized multilayer process on 200-mm wafers. The two junction layers can be, e.g., conventional Supercond uctor-Insulator-Superconductor (SIS) Nb/Al/AlO_x/Nb junctions with the same or different Josephson critical current densities, J_c. The process also allows integration of high-J_c Superconductor-Ferromagnet-Superconductor (SFS) or SFSS JJs on the first junction layer with Nb/Al/AlO_x/Nb trilayer junctions on the second junction layer, or vice versa. In the present node, the SFS trilayer, Nb/Ni/Nb is placed below the standard SIS trilayer and separated by one niobium wiring layer. The main purpose of integrating the SFS and SIS junction layers is to provide compact {pi}-phase shifters in logic cells of superconductor digital circuits and random access memories, and thereby increase the integration scale and functional density of superconductor electronics. The current node of the two-junction-layer process has six planarized niobium layers, two layers of resistors, and 350-nm minimum feature size. The target Josephson critical current densities for the SIS junctions are 100 {mu}A/{mu}m^2 and 200 {mu}A/{mu}m^2. We present the salient features of the new process, fabrication details, and characterization results on two layers of Josephson junctions integrated into one process, both for the conventional and {pi}-junctions.
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to vari ous external parameters. Despite the rising interest in ultra-clean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in anti-phase with Fabry-P{e}rot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations which include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum computation. In superconductor-TI-superconductor Josephson junctions, the supercurrent versus the phase difference between the superconductors, referred to as the current-phase relation (CPR), reveals important information including the nature of the superconducting transport. Here, we study the induced superconductivity in gate-tunable Josephson junctions (JJs) made from topological insulator BiSbTeSe2 with superconducting Nb electrodes. We observe highly skewed (non-sinusoidal) CPR in these junctions. The critical current, or the magnitude of the CPR, increases with decreasing temperature down to the lowest accessible temperature (T ~ 20 mK), revealing the existence of low-energy modes in our junctions. The gate dependence shows that close to the Dirac point the CPR becomes less skewed, indicating the transport is more diffusive, most likely due to the presence of electron/hole puddles and charge inhomogeneity. Our experiments provide strong evidence that superconductivity is induced in the highly ballistic topological surface states (TSS) in our gate-tunable TI- based JJs. Furthermore, the measured CPR is in good agreement with the prediction of a model which calculates the phase dependent eigenstate energies in our system, considering the finite width of the electrodes as well as the TSS wave functions extending over the entire circumference of the TI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا