ﻻ يوجد ملخص باللغة العربية
We study the Josephson current through a ferromagnetic trilayer, both in the diffusive and clean limits. For colinear (parallel or antiparallel) magnetizations in the layers, the Josephson current is small due to short range proximity effect in superconductor/ferromagnet structures. For non colinear magnetizations, we determine the conditions for the Josephson current to be dominated by another contribution originating from long range triplet proximity effect.
Charge and spin transport in a junction involving two triplet superconductors and a ferromagnetic barrier are studied. We use Bogoliubov-de Gennes wavefunctions to construct the Greens function, from which we obtain the Josephson currents in terms of
The order parameter of superconducting pairs penetrating an inhomogeneous magnetic material can acquire a long range triplet component (LRTC) with non-zero spin projection. This state has been predicted and generated recently in proximity systems and
In the past year, several groups have observed evidence for long-range spin-triplet supercurrent in Josephson junctions containing ferromagnetic (F) materials. In our work, the spin-triplet pair correlations are created by non-collinear magnetization
In 2010, several experimental groups obtained compelling evidence for spin-triplet supercurrent in Josephson junctions containing strong ferromagnetic materials. Our own best results were obtained from large-area junctions containing a thick central
The long-range proximity effect in superconductor/ferromagnet (S/F) hybrid nano-structures is observed if singlet Cooper pairs from the superconductor are converted into triplet pairs which can diffuse into the fer- romagnet over large distances. It