ﻻ يوجد ملخص باللغة العربية
The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix renormalization group or quantum Monte Carlo techniques, and analytical spin-wave theory calculations. Fe18 involves eighteen spin-5/2 Fe(III) ions with a Hilbert space dimension of 10^14, constituting a physical system that is situated in a region between microscopic and macroscopic. The combined experimental and theoretical approach allowed us to characterize and discuss the magnetic properties of Fe18 in great detail. It is demonstrated that physical concepts such as the rotational-band or L&E-band concepts developed for smaller rings are still applicable. In particular, the higher-lying low-temperature elementary spin excitations in Fe18 or AFM wheels in general are of discrete antiferromagnetic spin-wave character.
Recent inelastic neutron scattering experiments in CeIn$_{3}$ and CePd$_{2}$Si$_{2}$ single crystals measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong compet
Recent inelastic neutron scattering experiments in CeIn3 and CePd2Si2 single crystals, measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong competition between
The spin dynamic of the metallic A-type antiferromagnetic manganites is studied. An effective nearest-neighbour Heisenberg spin wave dispersion is derived from the double exchange model taking into account the superexchange interaction between the co
The pyrovanadate alpha-Cu2V2O7 belongs to the orthorhombic (Fdd2) class of crystals with noncentrosymmetric crystal structure. Recently, the compound has been identified to be a magnetic multiferroic with a substantial electric polarization below the
A quantum-mechanical 1/3 magnetization plateau and magnetic long-range order appear in the large-spin (5/2) substance SrMn3P4O14. Magnetization results of SrMn3P4O14 can be explained by the spin-5/2 isolated antiferromagnetic linear trimer with the i