ﻻ يوجد ملخص باللغة العربية
The pyrovanadate alpha-Cu2V2O7 belongs to the orthorhombic (Fdd2) class of crystals with noncentrosymmetric crystal structure. Recently, the compound has been identified to be a magnetic multiferroic with a substantial electric polarization below the magnetic transition temperature TC = 35 K. Here we report the results of our inelastic neutron scattering (INS) studies on a polycrystalline sample of alpha-Cu2V2O7. Our INS data clearly show the existence of dispersive spin wave excitations below TC with a zone-boundary energy of 11 meV at 5 K.We have analyzed the data using linear spin wave theory, which shows good agreement between the experiment and calculation. The analysis is consistent with the third nearest neighbor exchange interaction playing a dominant role in the magnetism of the material.
Kitaev interactions underlying a quantum spin liquid have been long sought, but experimental data from which their strengths can be determined directly is still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality
The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix renormalization group or quant
We investigate the spin-wave excitations in the spin-density wave state of doped iron pnictides within a five-orbital model. We find that the excitations along ($pi, 0$)$rightarrow$($pi, pi$) are very sensitive to the doping whereas they do not exhib
Recent inelastic neutron scattering experiments in CeIn$_{3}$ and CePd$_{2}$Si$_{2}$ single crystals measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong compet
Sr$_2$CuWO$_6$ is a double perovskite proposed to be at the border between two and three dimensional magnetism, with a square lattice of $S=frac{1}{2}$ Cu$^{2+}$ ions. We have used inelastic neutron scattering to investigate the spin wave excitations