ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin wave excitations in the pyrovanadate alpha-Cu2V2O7

53   0   0.0 ( 0 )
 نشر من قبل Subham Majumdar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pyrovanadate alpha-Cu2V2O7 belongs to the orthorhombic (Fdd2) class of crystals with noncentrosymmetric crystal structure. Recently, the compound has been identified to be a magnetic multiferroic with a substantial electric polarization below the magnetic transition temperature TC = 35 K. Here we report the results of our inelastic neutron scattering (INS) studies on a polycrystalline sample of alpha-Cu2V2O7. Our INS data clearly show the existence of dispersive spin wave excitations below TC with a zone-boundary energy of 11 meV at 5 K.We have analyzed the data using linear spin wave theory, which shows good agreement between the experiment and calculation. The analysis is consistent with the third nearest neighbor exchange interaction playing a dominant role in the magnetism of the material.



قيم البحث

اقرأ أيضاً

Kitaev interactions underlying a quantum spin liquid have been long sought, but experimental data from which their strengths can be determined directly is still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of $alpha$-RuCl$_3$, we observe spin-wave spectra with a gap of $sim$2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principle calculations, and find that the anisotropic Kitaev interaction $K$ term and the isotropic antiferromagentic off-diagonal exchange interaction $Gamma$ term are significantly larger than the Heisenberg exchange coupling $J$ term. Our experimental data can be well fit using an effective-spin model with $K=-6.8$ meV and $Gamma=9.5$ meV. These results demonstrate explicitly that Kitaev physics is realized in real materials.
The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix renormalization group or quant um Monte Carlo techniques, and analytical spin-wave theory calculations. Fe18 involves eighteen spin-5/2 Fe(III) ions with a Hilbert space dimension of 10^14, constituting a physical system that is situated in a region between microscopic and macroscopic. The combined experimental and theoretical approach allowed us to characterize and discuss the magnetic properties of Fe18 in great detail. It is demonstrated that physical concepts such as the rotational-band or L&E-band concepts developed for smaller rings are still applicable. In particular, the higher-lying low-temperature elementary spin excitations in Fe18 or AFM wheels in general are of discrete antiferromagnetic spin-wave character.
We investigate the spin-wave excitations in the spin-density wave state of doped iron pnictides within a five-orbital model. We find that the excitations along ($pi, 0$)$rightarrow$($pi, pi$) are very sensitive to the doping whereas they do not exhib it a similar sensitivity along ($0, 0$) $rightarrow$ ($pi, 0$). Secondly, anisotropy in the excitations around ($pi, 0$) with an elliptical shape grows on moving towards the hole-doped region for low energy, whereas it decreases for the high-energy excitations on the contrary. Thirdly, spin-wave spectral weight shifts towards the low-energy region on moving away from zero doping. We find these features to be in qualitative agreement with the inelastic neutron-scattering measurements for the doped pnictides.
252 - M. Acquarone , C.I. Ventura 2008
Recent inelastic neutron scattering experiments in CeIn$_{3}$ and CePd$_{2}$Si$_{2}$ single crystals measured spin wave excitations at low temperatures. These two heavy fermion compounds exhibit antiferromagnetic long-range order, but a strong compet ition between the Ruderman-Kittel-Kasuya-Yosida(RKKY) interaction and Kondo effect is evidenced by their nearly equal Neel and Kondo temperatures. Our aim is to show how magnons such as measured in the antiferromagnetic phase of these Ce compounds, can be described with a microscopic Heisenberg-Kondo model introduced by J.R.Iglesias, C.Lacroix and B.Coqblin, used before for studies of the non-magnetic phase. The model includes the correlated Ce-$4 f$ electrons hybridized with the conduction band, where we also allow for correlations, and we consider competing RKKY (Heisenberg-like $J_{H} $) and Kondo ($J_{K}$) antiferromagnetic couplings. Carrying on a series of unitary transformations, we perturbatively derive a second-order effective Hamiltonian which, projected onto the antiferromagnetic electron ground state, describes the spin wave excitations, renormalized by their interaction with correlated itinerant electrons. We numerically study how the different parameters of the model influence the renormalization of the magnons, yielding useful information for the analysis of inelastic neutron scattering experiments in antiferromagnetic heavy fermion compounds. We also compare our results with the available experimental data, finding good agreement with the spin wave measurements in cubic CeIn$_3$.
Sr$_2$CuWO$_6$ is a double perovskite proposed to be at the border between two and three dimensional magnetism, with a square lattice of $S=frac{1}{2}$ Cu$^{2+}$ ions. We have used inelastic neutron scattering to investigate the spin wave excitations of the system, to find out how they evolve as a function of temperature, as well as to obtain information about the magnetic exchange interactions. We observed well defined dispersive spin wave modes at $6$~K, which partially survive above the magnetic ordering temperature, $T_N=24$~K. Linear spin wave theory is used to determine the exchange interactions revealing them to be highly two-dimensional in nature. Density functional theory calculations are presented supporting this experimental finding, which is in contrast to a previous emph{ab-initio} study of the magnetic interactions. Our analysis confirms that not the nearest neighbour, but the next nearest neighbour interactions in the tetragonal $ab$ plane are the strongest. Low incident energy measurements reveal the opening of a $0.6(1)$~meV gap below $T_N$, which suggests the presence of a very weak single ion anisotropy term in the form of an easy axis along $hat{mathbf{a}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا