ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in the spin-5/2 antiferromagnetic trimer substance SrMn3P4O14

292   0   0.0 ( 0 )
 نشر من قبل Masashi Hase
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum-mechanical 1/3 magnetization plateau and magnetic long-range order appear in the large-spin (5/2) substance SrMn3P4O14. Magnetization results of SrMn3P4O14 can be explained by the spin-5/2 isolated antiferromagnetic linear trimer with the intra-trimer interaction ($J_1$) value of 4.0 K. In the present study, to confirm the spin system, we performed inelastic neutron scattering (INS) experiments of SrMn3P4O14 powders. We observed plural magnetic excitations. The peak positions are 0.46, 0.68, and 1.02 meV. Constant-Q-scan spectra at several Q values (magnitude of the scattering vector) indicate that the dispersion is weak. The weak dispersion indicates that the excitations are transitions between discrete energy levels. Our INS results are consistent with results expected in the trimer model. We evaluated the J1 value as 0.29 meV (3.4 K) without considering the other interactions.



قيم البحث

اقرأ أيضاً

We study a spin-5/2 antiferromagnetic trimerized chain substance SrMn3P4O14 using neutron powder diffraction experiments. The coplanar spiral magnetic structure appears below T_N1 = 2.2(1) K. Values of several magnetic structure parameters change rap idly at T_N2 = 1.75(5) K, indicating another phase transition, although the magnetic structures above and below T_N2 are the qualitatively same. The spiral magnetic structure can be explained by frustration between nearest-neighbor and next-nearest-neighbor exchange interactions in the trimerized chains.
Using Lanczos exact diagonalization, stochastic analytic continuation of quantum Monte Carlo data, and perturbation theory, we investigate the dynamic spin structure factor $mathcal{S}(q,omega)$ of the $S=1/2$ antiferromagnetic Heisenberg trimer chai n. We systematically study the evolution of the spectrum by varying the ratio $g=J_2/J_1$ of the intertrimer and intratrimer coupling strengths and interpret the observed features using analytical and numerical calculations with the trimer eigenstates. The doublet ground states of the trimers form effective interacting $S=1/2$ degrees of freedom described by a Heisenberg chain with coupling $J_{rm eff}=(4/9)J_2$. Therefore, the conventional two-spinon continuum of width $propto J_1$ when $g=1$ evolves into to a similar continuum of width $propto J_2$ in the reduced Brillouin zone when $gto 0$. The high-energy modes (at $omega propto J_1$) for $g alt 0.5$ can be understood as weakly dispersing propagating internal trimer excitations (which we term doublons and quartons), and these fractionalize with increasing $g$ to form the conventional spinon continuum when $g to 1$. The coexistence of two kinds of emergent spinon branches for intermediate values of $g$ give rise to interesting spectral signatures, especially at $g approx 0.7$ where the gap between the low-energy spinon branch and the high energy band of mixed doublons, quartons, and spinons closes. These features should be observable in inelastic neutron scattering experiments if a quasi-one-dimensional quantum magnet with the linear trimer structure and $J_2 < J_1$ can be identified. We suggest that finding such materials would be useful, enabling detailed studies of coexisting exotic excitations and their interplay within a relatively simple theoretical framework.
We performed inelastic neutron scattering experiments on Cu$_2$$^{114}$Cd$^{11}$B$_2$O$_6$ powder. The magnetic excitations at low temperatures are similar to those of the interacting spin-1/2 tetramers in the ordered state. The weak excitations exis ting above 3 meV suggest that the Higgs mode appears in Cu$_2$CdB$_2$O$_6$ at ambient pressure and zero magnetic field. We evaluated $J_1 = 27.3 pm 1.0$ and $J_2 = -14.0 pm 1.4$ meV for the intra-tetramer interactions and $J_3 = -0.4 pm 0.2$ and $J_4 = 1.4 pm 0.2$ meV for the inter-tetramer interactions. The spin gap in the isolated spin tetramer was calculated to be 1.6 meV, which is less than the effective inter-tetramer interaction value ($3.6 pm 0.8$ meV). Therefore, antiferromagnetic long-range order is possible, although the ground state of the isolated spin tetramer is the spin-singlet state. We discuss the temperature dependence of the magnetic excitations.
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temper atures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu$_2$V$_2$O$_8$ which we show to be an alternating antiferromagnetic-ferromagnetic spin$-1/2$ chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon exci tations, a relatively weak continuum scattering is also observed at higher energies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistent with predictions of spin wave theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا