ﻻ يوجد ملخص باللغة العربية
A quantum-mechanical 1/3 magnetization plateau and magnetic long-range order appear in the large-spin (5/2) substance SrMn3P4O14. Magnetization results of SrMn3P4O14 can be explained by the spin-5/2 isolated antiferromagnetic linear trimer with the intra-trimer interaction ($J_1$) value of 4.0 K. In the present study, to confirm the spin system, we performed inelastic neutron scattering (INS) experiments of SrMn3P4O14 powders. We observed plural magnetic excitations. The peak positions are 0.46, 0.68, and 1.02 meV. Constant-Q-scan spectra at several Q values (magnitude of the scattering vector) indicate that the dispersion is weak. The weak dispersion indicates that the excitations are transitions between discrete energy levels. Our INS results are consistent with results expected in the trimer model. We evaluated the J1 value as 0.29 meV (3.4 K) without considering the other interactions.
We study a spin-5/2 antiferromagnetic trimerized chain substance SrMn3P4O14 using neutron powder diffraction experiments. The coplanar spiral magnetic structure appears below T_N1 = 2.2(1) K. Values of several magnetic structure parameters change rap
Using Lanczos exact diagonalization, stochastic analytic continuation of quantum Monte Carlo data, and perturbation theory, we investigate the dynamic spin structure factor $mathcal{S}(q,omega)$ of the $S=1/2$ antiferromagnetic Heisenberg trimer chai
We performed inelastic neutron scattering experiments on Cu$_2$$^{114}$Cd$^{11}$B$_2$O$_6$ powder. The magnetic excitations at low temperatures are similar to those of the interacting spin-1/2 tetramers in the ordered state. The weak excitations exis
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temper
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon exci