ترغب بنشر مسار تعليمي؟ اضغط هنا

A hot Uranus transiting the nearby M dwarf GJ3470. Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry

85   0   0.0 ( 0 )
 نشر من قبل Xavier Bonfils
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the discovery of GJ3470b, a transiting hot Uranus of mass m_p = 14.0+-1.8 Mearth, radius R_p = 4.2+-0.6 Rearth and period P=3.3371+-0.0002 day. Its host star is a nearby (d=25.2+-2.9pc) M1.5 dwarf of mass M_s=0.54+-0.07 Msol and radius R_s=0.50+-0.06 Rsol. The detection originates from a radial-velocity campaign with HARPS that focused on the search for short-period planets orbiting M dwarfs. Once the planet was discovered and the transit-search window narrowed to about 10% of an orbital period, a photometric search started with TRAPPIST and quickly detected the ingress of the planet. Additional observations with TRAPPIST, EulerCam and NITES definitely confirmed the transiting nature of GJ3470b and allow for the determination of its true mass and radius. The stars visible or infrared brightness (V=12.3, K=8.0 mag), together with a large eclipse depth D=0.57+-0.05%, ranks GJ3470b among the most favorable planets for follow-up characterizations.

قيم البحث

اقرأ أيضاً

We present the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host ($T_{eff}=3916^{+71}_{-63}~K$) in a P=2.674d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of $0.812^{+0.066}_{-0.075}~ M_{J}$, making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is $1.33^{+0.61}_{-0.33}~R_{J}$. Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disk population. With a deep (2.5%) transit around a $K=11.9$ host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via JWST transmission spectroscopy.
We describe the pre-OmegaTranS project, a deep survey for transiting extra-solar planets in the Carina region of the Galactic Disk. In 2006-2008 we observed a single dense stellar field with a very high cadence of ~2min using the ESO Wide Field Image r at the La Silla Observatory. Using the Astronomical Wide-field System for Europe and the Munich Difference Imaging Analysis pipeline, a module that has been developed for this project, we created the light curves of 16000 stars with more than 4000 data points which we searched for periodic transit signals using a box-fitting least-squares detection algorithm. All light curves are publicly available. In the course of the pre-OmegaTranS project we identified two planet candidates - POTS-1b and POTS-C2b - which we present in this work. With extensive follow-up observations we were able to confirm one of them, POTS-1b, a hot Jupiter transiting a mid-K dwarf. The planet has a mass of 2.31+-0.77M_Jup and a radius of 0.94+-0.04R_Jup and a period of P=3.16d. The host star POTS-1 has a radius of 0.59+-0.02R_Sun and a mass of 0.70+-0.05M_Sun. Due to its low apparent brightness of I=16.1mag the follow-up and confirmation of POTS-1b was particularly challenging and costly.
We confirm the planetary nature of a warm Jupiter transiting the early M dwarf TOI-1899, using a combination of available TESS photometry; high-precision, near-infrared spectroscopy with the Habitable-zone Planet Finder; and speckle and adaptive opti cs imaging. The data reveal a transiting companion on an $sim29$-day orbit with a mass and radius of $0.66pm0.07 mathrm{M_{J}}$ and $1.15_{-0.05}^{+0.04} mathrm{R_{J}}$, respectively. The star TOI-1899 is the lowest-mass star known to host a transiting warm Jupiter, and we discuss the follow-up opportunities afforded by a warm ($mathrm{T_{eq}}sim362$ K) gas giant orbiting an M0 star. Our observations reveal that TOI-1899.01 is a puffy warm Jupiter, and we suggest additional transit observations to both refine the orbit and constrain the true dilution observed in TESS.
We report the detection of a transiting Earth-size planet around GJ 357, a nearby M2.5V star, using data from the Transiting Exoplanet Survey Satellite (TESS). GJ 357 b (TOI-562.01) is a transiting, hot, Earth-sized planet (Teq=525+-11 K) with a radi us of Rb=1.217+-0.084 Re and an orbital period of Pb=3.93 d. Precise stellar radial velocities from CARMENES and PFS, as well as archival data from HIRES, UVES, and HARPS also display a 3.93-day periodicity, confirming the planetary nature and leading to a planetary mass of Mb=1.84+-0.31 Me. In addition to the radial velocity signal for GJ 357 b, more periodicities are present in the data indicating the presence of two further planets in the system: GJ 357 c, with a minimum mass of Mc=3.40+-0.46 Me in a 9.12 d orbit, and GJ 357 d, with a minimum mass of Md=6.1+-1.0 Me in a 55.7 d orbit inside the habitable zone. The host is relatively inactive and exhibits a photometric rotation period of Prot=78+-2 d. GJ 357 b is to date the second closest transiting planet to the Sun, making it a prime target for further investigations such as transmission spectroscopy. Therefore, GJ 357 b represents one of the best terrestrial planets suitable for atmospheric characterization with the upcoming JWST and ground-based ELTs.
We use TESS, Spitzer, ground-based light curves and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity ti me series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, $V = 14.2$ mag, $J = 10.3$ mag) is characterized by its M2V spectral type with $mathrm{M}_star=0.420pm 0.010$ M$_odot$, $mathrm{R}_star = 0.420pm 0.013$ R$_odot$, and $mathrm{T}_{mathrm{eff}} = 3514pm 57$ K, and is located at a distance $d=46.16 pm 0.03$ pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of $1.977143 pm 3times 10^{-6}$ days, a planetary radius of $5.25 pm 0.17$ $mathrm{R}_oplus$, and a mass of $23.6 pm 3.3$ $mathrm{M}_oplus$ implying a mean density of $rho_mathrm{p} = 0.91 pm 0.15$ [g cm$^{-3}$]. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M type star to date. It is also a resident of the so-called Neptunian desert and a promising candidate for atmospheric characterisation using the James Webb Space Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا