ترغب بنشر مسار تعليمي؟ اضغط هنا

TOI-674b: an oasis in the desert of exo-Neptunes transiting a nearby M dwarf

300   0   0.0 ( 0 )
 نشر من قبل Felipe Murgas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use TESS, Spitzer, ground-based light curves and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, $V = 14.2$ mag, $J = 10.3$ mag) is characterized by its M2V spectral type with $mathrm{M}_star=0.420pm 0.010$ M$_odot$, $mathrm{R}_star = 0.420pm 0.013$ R$_odot$, and $mathrm{T}_{mathrm{eff}} = 3514pm 57$ K, and is located at a distance $d=46.16 pm 0.03$ pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of $1.977143 pm 3times 10^{-6}$ days, a planetary radius of $5.25 pm 0.17$ $mathrm{R}_oplus$, and a mass of $23.6 pm 3.3$ $mathrm{M}_oplus$ implying a mean density of $rho_mathrm{p} = 0.91 pm 0.15$ [g cm$^{-3}$]. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M type star to date. It is also a resident of the so-called Neptunian desert and a promising candidate for atmospheric characterisation using the James Webb Space Telescope.

قيم البحث

اقرأ أيضاً

We report the Transiting Exoplanet Survey Satellite discovery of three small planets transiting one of the nearest and brightest M dwarf hosts to date, TOI-270 (TIC 259377017; K-mag 8.3; 22.5 parsec). The M3V-type star is transited by the super-Earth -sized TOI-270 b (1.247+0.089-0.083 R_earth) and the sub-Neptune-sized exoplanets TOI-270 c (2.42+-0.13 R_earth) and TOI-270 d (2.13+-0.12 R_earth). The planets orbit close to a mean-motion resonant chain, with periods (3.36, 5.66, and 11.38 days) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies since: 1) its near-resonance allows detecting transit timing variations for precise mass measurements and dynamical studies; 2) its brightness enables independent radial velocity mass measurements; 3) the outer planets are ideal for atmospheric characterisation via transmission spectroscopy; and 4) the quiet star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterisation as TOI-270.
The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, steady progress was made in achieving the missions primary science goal of e stablishing bulk densities for 50 planets smaller than Neptune. During that year, TESSs observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V=11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c and TOI-125d. TOI-125b has an orbital period of 4.65 days, a radius of $2.726 pm 0.075 ~mathrm{R_{rm E}}$, a mass of $ 9.50 pm 0.88 ~mathrm{M_{rm E}}$ and is near the 2:1 mean motion resonance with TOI-125c at 9.15 days. TOI-125c has a similar radius of $2.759 pm 0.10 ~mathrm{R_{rm E}}$ and a mass of $ 6.63 pm 0.99 ~mathrm{M_{rm E}}$, being the puffiest of the three planets. TOI-125d, has an orbital period of 19.98 days and a radius of $2.93 pm 0.17~mathrm{R_{rm E}}$ and mass $13.6 pm 1.2 ~mathrm{M_{rm E}}$. For TOI-125b and TOI-125d we find unusual high eccentricities of $0.19pm 0.04$ and $0.17^{+0.08}_{-0.06}$, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for TOI-125.04 ($R_P=1.36 ~mathrm{R_{rm E}}$, $P=$0.53 days) we find a $2sigma$ upper mass limit of $1.6~mathrm{M_{rm E}}$, whereas TOI-125.05 ( $R_P=4.2^{+2.4}_{-1.4} ~mathrm{R_{rm E}}$, $P=$ 13.28 days) is unlikely a viable planet candidate with upper mass limit $2.7~mathrm{M_{rm E}}$. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099 +- 0.042 M_J (31.5 +- 13.4 M_earth) and a radius of 0.606 +- 0.016 R_J, and is on a P = 4.3315 days orbit around a V = 12.266 mag, 0.8 43 M_sun star with a radius of 0.877 R_sun. We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654 M_sun.The planet HATS-38b has a mass of 0.074 +- 0.011 M_J (23.5 +- 3.5 M_earth) and a radius of 0.614 +- 0.017 R_J, and is on a P = 4.3750 days orbit around a V = 12.411 mag, 0.890 M_sun star with a radius of 1.105 R_sun. Both systems appear to be old, with isochrone-based ages of 11.46 +0.79-1.45 Gyr, and 11.89 +- 0.60 Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest mass planets found from ground-based wide-field surveys to date.
The TESS mission has reported a wealth of new planetary systems around bright and nearby stars amenable for detailed characterization of the planet properties and their atmospheres. However, not all interesting TESS planets orbit around bright host s tars. TOI-263b is a validated ultra-short period substellar object in a 0.56-day orbit around a faint (V=18.97) M3.5 dwarf star. The substellar nature of TOI-263b was explored using multi-color photometry, which determined a true radius of 0.87+-0.21 Rj, establishing TOI-263bs nature ranging from an inflated Neptune to a brown dwarf. The orbital period-radius parameter space occupied by TOI-263b is quite unique, which prompted a further characterization of its true nature. Here, we report radial velocity measurements of TOI-263 obtained with 3 VLT units and the ESPRESSO spectrograph to retrieve the mass of TOI-263b. We find that TOI-263b is a brown dwarf with a mass of 61.6+-4.0 Mj. Additionally, the orbital period of the brown dwarf is found to be synchronized with the rotation period of the host star, and the system is found to be relatively active, possibly revealing a star--brown dwarf interaction. All these findings suggest that the systems formation history might be explained via disc fragmentation and later migration to close-in orbits. If the system is found to be unstable, TOI-263 is an excellent target to test the migration mechanisms before the brown dwarf becomes engulfed by its parent star.
We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf ($d=22$ pc, $M_star = 0.39$ M$_odot$, $R_star = 0.38$ R$_odot$), which hosts three transiting planets that were recently discovered using data from the Transiting Exopla net Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 days. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be $1.58 pm 0.26$, $6.15 pm 0.37$, and $4.78 pm 0.43$ M$_oplus$, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the `radius valley -- a region in the radius-period diagram with relatively few members, which has been interpreted as a consequence of atmospheric photo-evaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf ($T_mathrm{eff} < 4000$ K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photo-evaporation and core-powered mass loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا