ﻻ يوجد ملخص باللغة العربية
The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable, e.g. of intermediate growth, (iii) any finitely presented group $E$ with a quotient isomorphic to $G$ contains non-abelian free subgroups, or the stronger (iii) any finitely presented group with a quotient isomorphic to $G$ is large.
We generalize a result of R. Thomas to establish the non-vanishing of the first l2-Betti number for a class of finitely generated groups.
We define a notion of uniform density on translation bounded measures in unimodular amenable locally compact Hausdorff groups, which is based on a group invariant introduced by Leptin in 1966. We show that this density notion coincides with the well-
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of
The isoperimeric spectrum consists of all real positive numbers $alpha$ such that $O(n^alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric s
We exhibit explicit infinite families of finitely presented, Kazhdan, simple groups that are pairwise not measure equivalent. These groups are lattices acting on products of buildings. We obtain the result by studying vanishing and non-vanishing of their $L^2$-Betti numbers.