ﻻ يوجد ملخص باللغة العربية
The isoperimeric spectrum consists of all real positive numbers $alpha$ such that $O(n^alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric spectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $mathbf{P=NP}$ and even a formally weaker conjecture.
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that
The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of
We exhibit explicit infinite families of finitely presented, Kazhdan, simple groups that are pairwise not measure equivalent. These groups are lattices acting on products of buildings. We obtain the result by studying vanishing and non-vanishing of their $L^2$-Betti numbers.
We describe a novel algorithm for random sampling of freely reduced words equal to the identity in a finitely presented group. The algorithm is based on Metropolis Monte Carlo sampling. The algorithm samples from a stretched Boltzmann distribution be