ترغب بنشر مسار تعليمي؟ اضغط هنا

Finitely presented simple groups and measure equivalence

140   0   0.0 ( 0 )
 نشر من قبل Antonio L\\'opez Neumann
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We exhibit explicit infinite families of finitely presented, Kazhdan, simple groups that are pairwise not measure equivalent. These groups are lattices acting on products of buildings. We obtain the result by studying vanishing and non-vanishing of their $L^2$-Betti numbers.



قيم البحث

اقرأ أيضاً

The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable , e.g. of intermediate growth, (iii) any finitely presented group $E$ with a quotient isomorphic to $G$ contains non-abelian free subgroups, or the stronger (iii) any finitely presented group with a quotient isomorphic to $G$ is large.
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups $mathrm{BS}(N,N) = < a,b | a^N b = b a^N >$ and prove that their cogrowth rates are algebraic numbers.
172 - Mark Sapir 2018
The isoperimeric spectrum consists of all real positive numbers $alpha$ such that $O(n^alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric s pectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $mathbf{P=NP}$ and even a formally weaker conjecture.
142 - Wenhao Wang 2020
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.
In this paper, we consider an equivalence relation within the class of finitely presented discrete groups attending to their asymptotic topology rather than their asymptotic geometry. More precisely, we say that two finitely presented groups $G$ and $H$ are proper $2$-equivalent if there exist (equivalently, for all) finite $2$-dimensional CW-complexes $X$ and $Y$, with $pi_1(X) cong G$ and $pi_1(Y) cong H$, so that their universal covers $widetilde{X}$ and $widetilde{Y}$ are proper $2$-equivalent. It follows that this relation is coarser than the quasi-isometry relation. We point out that finitely presented groups which are $1$-ended and semistable at infinity are classified, up to proper $2$-equivalence, by their fundamental pro-group, and we study the behaviour of this relation with respect to some of the main constructions in combinatorial group theory. A (finer) similar equivalence relation may also be considered for groups of type $F_n, n geq 3$, which captures more of the large-scale topology of the group. Finally, we pay special attention to the class of those groups $G$ which admit a finite $2$-dimensional CW-complex $X$ with $pi_1(X) cong G$ and whose universal cover $widetilde{X}$ has the proper homotopy type of a $3$-manifold. We show that if such a group $G$ is $1$-ended and semistable at infinity then it is proper $2$-equivalent to either ${mathbb Z} times {mathbb Z} times {mathbb Z}$, ${mathbb Z} times {mathbb Z}$ or ${mathbb F}_2 times {mathbb Z}$ (here, ${mathbb F}_2$ is the free group on two generators). As it turns out, this applies in particular to any group $G$ fitting as the middle term of a short exact sequence of infinite finitely presented groups, thus classifying such group extensions up to proper $2$-equivalence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا