ﻻ يوجد ملخص باللغة العربية
The study of community structure has been a hot topic of research over the last years. But, while successfully applied in several areas, the concept lacks of a general and precise notion. Facts like the hierarchical structure and heterogeneity of complex networks make it difficult to unify the idea of community and its evaluation. The global functional known as modularity is probably the most used technique in this area. Nevertheless, its limits have been deeply studied. Local techniques as the ones by Lancichinetti et al. and Palla et al. arose as an answer to the resolution limit and degeneracies that modularity has. Here we start from the algorithm by Lancichinetti et al. and propose a unique growth process for a fitness function that, while being local, finds a community partition that covers the whole network, updating the scale parameter dynamically. We test the quality of our results by using a set of benchmarks of heterogeneous graphs. We discuss alternative measures for evaluating the community structure and, in the light of them, infer possible explanations for the better performance of local methods compared to global ones in these cases.
Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network str
We consider the exclusion process on a ring with time-dependent defective bonds at which the hoping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore b
Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here,
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address var