ترغب بنشر مسار تعليمي؟ اضغط هنا

Random walks on activity-driven networks with attractiveness

91   0   0.0 ( 0 )
 نشر من قبل Laura Alessandretti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterised by these two features. We study how these properties affect random walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first passage time of the process and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems such heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.



قيم البحث

اقرأ أيضاً

We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describ es the propensity to form connections. The second, defines the propensity to attract them. We derive analytically the epidemic threshold considering the timescale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epide mic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Levy random walk is the most efficient strategy. Our results give us a deeper understanding of Levy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
We study the effect of heterogeneous temporal activations on epidemic spreading in temporal networks. We focus on the susceptible-infected-susceptible (SIS) model on activity-driven networks with burstiness. By using an activity-based mean-field appr oach, we derive a closed analytical form for the epidemic threshold for arbitrary activity and inter-event time distributions. We show that, as expected, burstiness lowers the epidemic threshold while its effect on prevalence is twofold. In low-infective systems burstiness raises the average infection probability, while it weakens epidemic spreading for high infectivity. Our results can help clarify the conflicting effects of burstiness reported in the literature. We also discuss the scaling properties at the transition, showing that they are not affected by burstiness.
174 - Enys Mones 2012
In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and to the fruitful application of powerful methods used in statistical physics. Man y important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different type of correlations. The behavior of hierarchy is different in the absence and the presence of the giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that hierarchy does not change monotonously with the correlations and there is an optimal level of non-zero correlations maximizing the level of hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا