ترغب بنشر مسار تعليمي؟ اضغط هنا

Fitness-driven deactivation in network evolution

245   0   0.0 ( 0 )
 نشر من قبل Xin-Jian Xu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, $C(k) sim k^{-1}$ and $C sim n^{-1}$, where $k$ and $n$ refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and aging of networks where intrinsic features of individual nodes drive their popularity, and hence degree.



قيم البحث

اقرأ أيضاً

Real networks are finite metric spaces. Yet the geometry induced by shortest path distances in a network is definitely not its only geometry. Other forms of network geometry are the geometry of latent spaces underlying many networks, and the effectiv e geometry induced by dynamical processes in networks. These three approaches to network geometry are all intimately related, and all three of them have been found to be exceptionally efficient in discovering fractality, scale-invariance, self-similarity, and other forms of fundamental symmetries in networks. Network geometry is also of great utility in a variety of practical applications, ranging from the understanding how the brain works, to routing in the Internet. Here, we review the most important theoretical and practical developments dealing with these approaches to network geometry in the last two decades, and offer perspectives on future research directions and challenges in this novel frontier in the study of complexity.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. Here, using the North American power grid, we identify, quantify, and analyze the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causes of cascading failures relevant for grid design and operation, and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network str ucture remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social gro up structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.
We propose a new mechanism leading to scale-free networks which is based on the presence of an intrinsic character of a vertex called fitness. In our model, a vertex $i$ is assigned a fitness $x_i$, drawn from a given probability distribution functio n $f(x)$. During network evolution, with rate $p$ we add a vertex $j$ of fitness $x_j$ and connect to an existing vertex $i$ of fitness $x_i$ selected preferentially to a linking probability function $g(x_i,x_j)$ which depends on the fitnesses of the two vertices involved and, with rate $1-p$ we create an edge between two already existed vertices with fitnesses $x_i$ and $x_j$, with a probability also preferential to the connection function $g(x_i,x_j)$. For the proper choice of $g$, the resulting networks have generalized power laws, irrespective of the fitness distribution of vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا