ترغب بنشر مسار تعليمي؟ اضغط هنا

Shape transition and fluctuation in neutron-rich Cr isotopes around N = 40

135   0   0.0 ( 0 )
 نشر من قبل Koichi Sato
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The spherical-to-prolate shape transition in neutron-rich Cr isotopes from N = 34 to 42 is studied by solving the collective Schru007fodinger equation for the five-dimensional quadrupole collective Hamiltonian. The collective potential and inertial functions are microscopically derived with use of the constrained Hartree-Fock-Bogoliubov plus local quasiparticle random-phase approximation method. Nature of the quadrupole collectivity of low-lying states is discussed by evaluating excitation spectra and electric quadrupole moments and transition strengths. The result of calculation indicates that Cr isotopes around 64Cr are prolately deformed but still possess transitional character; large-amplitude shape fluctuations dominate in their low-lying states.

قيم البحث

اقرأ أيضاً

Neutron-rich nuclei in the vicinity of the $N=40$ island of inversion are characterized by shell evolution and exhibit deformed ground states. In several nuclei isomeric states have been observed and attributed to excitations to the intruder neutron $1g_{9/2}$ orbital. In the present study we searched for isomeric states in nuclei around $N=40$, $Z=22$ produced by projectile fragmentation at RIBF. Delayed $gamma$ rays were detected by the EURICA germanium detector array. High statistics data allowed for an updated decay scheme of $^{60}$V. The lifetime of an isomeric state in $^{64}$V was measured for the first time in the present experiment. A previously unobserved isomeric state was discovered in $^{58}$Sc. The measured lifetime suggests a parity changing transition, originating from an odd number of neutrons in the $1g_{9/2}$ orbital. The nature of the isomeric state in $^{58}$Sc is thus different from isomers in the less exotic V and Sc nuclei.
Background: Neutron-rich nuclei around neutron number N = 60 show a dramatic shape transition from spherical ground states to prolate deformation in 98Sr and heavier nuclei. Purpose: The purpose of this study is to investigate the single-particle str ucture approaching the shape transitional region. Method: The level structures of neutron-rich 93,94,95Sr were studied via the d(94,95,96Sr,t) one-neutron stripping reactions at TRIUMF using a beam energy of 5.5 AMeV. {gamma}-rays emitted from excited states and recoiling charged particles were detected by using the TIGRESS and SHARC arrays, respectively. States were identified by gating on the excitation energy and, if possible, the coincident {gamma} radiation. Results: Triton angular distributions for the reactions populating states in ejectile nuclei 93,94,95Sr were compared with distorted wave Born approximation calculations to assign and revise spin and parity quantum numbers and extract spectroscopic factors. The results were compared with shell model calculations and the reverse (d,p) reactions and good agreement was obtained. Conclusions: The results for the d(94Sr,t)93Sr and d(95Sr,t)94Sr reactions are in good agreement with shell model calculations. A two level mixing analysis for the 0+ states in 94Sr suggest strong mixing of two shapes. For the d(96Sr,t)95Sr reaction the agreement with the shell model is less good. The configuration of the ground state of 96Sr is already more complex than predicted, and therefore indications for the shape transition can already be observed before N = 60.
133 - C. Izzo , G. Bollen , M. Brodeur 2017
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approac h to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region, however a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N > 40 along the iron and cobalt chains. Here we present the first Penning trap measurements of $^{68,69}$Co, performed at the Low-Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. In addition, we perform ab initio calculations of ground state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces which predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near $^{68}$Ni.
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 , ^3P_1 rightarrow 4s^2 4p 5s , ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{rm s}$ = $-$0.198(4) b, in excellent agreement with the literature value from molecular calculations. The moments of $^{69}$Ge have been revised: $mu$ = +0.920(5) $mu_{N}$ and $Q_{rm s}$= +0.114(8) b, and those of $^{71}$Ge have been confirmed. The experimental moments around $N = 40$ are interpreted with large-scale shell-model calculations using the JUN45 interaction, revealing rather mixed wave function configurations, although their $g$-factors are lying close to the effective single-particle values. Through a comparison with neighboring isotones, the structural change from the single-particle nature of nickel to deformation in germanium is further investigated around $N = 40$.
77 - W.Rother , A.Dewald , H.Iwasaki 2010
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro n-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا