ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

78   0   0.0 ( 0 )
 نشر من قبل Wolfram Rother
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.

قيم البحث

اقرأ أيضاً

133 - C. Izzo , G. Bollen , M. Brodeur 2017
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approac h to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region, however a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N > 40 along the iron and cobalt chains. Here we present the first Penning trap measurements of $^{68,69}$Co, performed at the Low-Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. In addition, we perform ab initio calculations of ground state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces which predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near $^{68}$Ni.
86 - H. Wang , N. Aoi , S. Takeuchi 2013
The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign to the respective 2+ -> 0+ decays. In addition, a candidate for the 4+ state at 1164(20) keV was observed in 122Pd. The resulting Ex(2+) systematics are essentially similar to those of the Xe (Z=54) isotopic chain and theoretical prediction by IBM-2, suggesting no serious shell quenching in the Pd isotopes in the vicinity of N=82.
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 , ^3P_1 rightarrow 4s^2 4p 5s , ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{rm s}$ = $-$0.198(4) b, in excellent agreement with the literature value from molecular calculations. The moments of $^{69}$Ge have been revised: $mu$ = +0.920(5) $mu_{N}$ and $Q_{rm s}$= +0.114(8) b, and those of $^{71}$Ge have been confirmed. The experimental moments around $N = 40$ are interpreted with large-scale shell-model calculations using the JUN45 interaction, revealing rather mixed wave function configurations, although their $g$-factors are lying close to the effective single-particle values. Through a comparison with neighboring isotones, the structural change from the single-particle nature of nickel to deformation in germanium is further investigated around $N = 40$.
63 - R. Winkler , A. Gade , T. Baugher 2012
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei uc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isot opes, a critical region of shell evolution and structural change. The deduced $B(E2)$ transition strengths are confronted with large-scale shell-model calculations in the $sdpf$ shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
Production cross sections of nitrogen isotopes from high-energy carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes. The fragment separator FRS at GSI was used to deliver C isotope beams. The cross sections of the production of N isotopes were determined by charge measurements of forward going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge exchange reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and Fermi transition strength at low excitation energies for neutron-rich isotopes. It was also observed that the cross sections were enhanced much more strongly for neutron rich isotopes in the C-target data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا