ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared phonon activity in pristine graphite

127   0   0.0 ( 0 )
 نشر من قبل Marco Manzardo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study experimentally and theoretically the Fano-shaped phonon peak at 1590 cm$^{-1}$ (0.2 eV) in the in-plane optical conductivity of pristine graphite. We show that the anomalously large spectral weight and the Fano asymmetry of the peak can be qualitatively accounted for by a charged-phonon theory. A crucial role in this context is played by the particle-hole asymmetry of the electronic $pi$-bands.

قيم البحث

اقرأ أيضاً

In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport has spanned over half a century but has been mostly limit ed to cryogenic temperatures (~1 K) and more recently to low-dimensional materials. Here, we identify graphite as a three-dimensional material that supports phonon hydrodynamics at significantly higher temperatures (~100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal the microscopic origin of these intriguing phenomena in terms of the dependence of the effective boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions. As a boundary-sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal management and energy conversion.
NaOH-reacted graphite oxide film was prepared by decomposing epoxy groups in graphite oxide into hydroxyl and -ONa groups with NaOH solution. Ultrafast carrier dynamics of the sample were studied by time-resolved transient differential reflection (De ltaR/R). The data show two exponential relaxation processes. The slow relaxation process (sim2ps) is ascribed to low energy acoustic phonon mediated scattering. The electron-phonon coupling and first-principles calculation results demonstrate that - OH and -ONa groups in the sample are strongly coupled. Thus, we attribute the fast relaxation process (sim0.17ps) to the coupling of hydroxyl and -ONa groups in the sample.
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-di mensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conducti vity, thickness, and phonon hydrodynamics. The room temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin-a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.
89 - P. Giura , N. Bonini , G. Creff 2012
We perform a comparative experimental and theoretical study of the temperature dependence up to 700 K of the frequency and linewidths of the graphite E1u and E2g optical phonons (~1590 and 1580 cm-1) by infra-red (IR) and Raman spectroscopy. Despite their similar character, the temperature dependence of the two modes is quite different, being, e.g., the frequency shift of the IR-active E1u mode is almost twice as big as that of the Raman active E2g mode. Ab initio calculations of the anharmonic properties are in remarkable agreement with measurements and explain the observed behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا