ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropical mirror symmetry in dimension one

94   0   0.0 ( 0 )
 نشر من قبل Christoph Goldner
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a tropical mirror symmetry theorem for descendant Gromov-Witten invariants of the elliptic curve, generalizing a tropical mirror symmetry theorem for Hurwitz numbers of the elliptic curve. For the case of the elliptic curve, the tropical version of mirror symmetry holds on a fine level and easily implies the equality of the generating series of descendant Gromov-Witten invariants of the elliptic curve to Feynman integrals. To prove tropical mirror symmetry for elliptic curves, we investigate the bijection between graph covers and sets of monomials contributing to a coefficient in a Feynman integral. We also soup up the traditional approach in mathematical physics to mirror symmetry for the elliptic curve, involving operators on a Fock space, to give a proof of tropical mirror symmetry for Hurwitz numbers of the elliptic curve. In this way, we shed light on the intimate relation between the operator approach on a bosonic Fock space and the tropical approach.



قيم البحث

اقرأ أيضاً

We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equival ence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces.
The goal of this article is to classify unramified covers of a fixed tropical base curve $Gamma$ with an action of a finite abelian group G that preserves and acts transitively on the fibers of the cover. We introduce the notion of dilated cohomology groups for a tropical curve $Gamma$, which generalize simplicial cohomology groups of $Gamma$ with coefficients in G by allowing nontrivial stabilizers at vertices and edges. We show that G-covers of $Gamma$ with a given collection of stabilizers are in natural bijection with the elements of the corresponding first dilated cohomology group of $Gamma$.
112 - Jaeho Shin 2020
A biconvex polytope is a convex polytope that is also tropically convex. It is well known that every bounded cell of a tropical linear space is a biconvex polytope, but its converse has been a conjecture. We classify biconvex polytopes, and prove the conjecture by constructing a matroid subdivision dual to a biconvex polytope. In particular, we construct matroids from bipartite graphs, and establish the relationship between bipartite graphs and faces of a biconvex polytope. We also show that there is a bijection between monomials and a maximal set of vertices of a biconvex polytope.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
This is a sequel to our work in tropical Hodge theory. Our aim here is to prove a tropical analogue of the Clemens-Schmid exact sequence in asymptotic Hodge theory. As an application of this result, we prove the tropical Hodge conjecture for smooth p rojective tropical varieties which are rationally triangulable. This provides a partial answer to a question of Kontsevich who suggested the validity of the tropical Hodge conjecture could be used as a test for the validity of the Hodge conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا