ترغب بنشر مسار تعليمي؟ اضغط هنا

Diameter and spectral gap for planar graphs

113   0   0.0 ( 0 )
 نشر من قبل Larsen Louder
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the spectral gap of a finite planar graph $X$ is bounded by $lambda_1(X)le C(frac{log(diam X)}{diam X})^2$ where $C$ depends only on the degree of $X$. We then give a sequence of such graphs showing the the above estimate cannot be improved. This yields a negative answer to a question of Benjamini and Curien on the mixing times of the simple random walk on planar graphs.



قيم البحث

اقرأ أيضاً

332 - M. Abdi , E. Ghorbani , W. Imrich 2019
Aldous and Fill conjectured that the maximum relaxation time for the random walk on a connected regular graph with $n$ vertices is $(1+o(1)) frac{3n^2}{2pi^2}$. This conjecture can be rephrased in terms of the spectral gap as follows: the spectral ga p (algebraic connectivity) of a connected $k$-regular graph on $n$ vertices is at least $(1+o(1))frac{2kpi^2}{3n^2}$, and the bound is attained for at least one value of $k$. Based upon previous work of Brand, Guiduli, and Imrich, we prove this conjecture for cubic graphs. We also investigate the structure of quartic (i.e. 4-regular) graphs with the minimum spectral gap among all connected quartic graphs. We show that they must have a path-like structure built from specific blocks.
We introduce the family of $k$-gap-planar graphs for $k geq 0$, i.e., graphs that have a drawing in which each crossing is assigned to one of the two involved edges and each edge is assigned at most $k$ of its crossings. This definition is motivated by applications in edge casing, as a $k$-gap-planar graph can be drawn crossing-free after introducing at most $k$ local gaps per edge. We present results on the maximum density of $k$-gap-planar graphs, their relationship to other classes of beyond-planar graphs, characterization of $k$-gap-planar complete graphs, and the computational complexity of recognizing $k$-gap-planar graphs.
268 - Tao Li 2008
We show that given a trivalent graph in $S^3$, either the graph complement contains an essential almost meridional planar surface or thin position for the graph is also bridge position. This can be viewed as an extension of a theorem of Thompson to g raphs. It follows that any graph complement always contains a useful planar surface.
The Tutte polynomial is a powerfull analytic tool to study the structure of planar graphs. In this paper, we establish some relations between the number of clusters per bond for planar graph and its dual : these relations bring into play the coordina tion number of the graphs. The factorial moment measure of the number of clusters per bond are given using the derivative of the Tutte polynomial. Examples are presented for simple planar graph. The cases of square, triangular, honeycomb, Archimedean and Laves lattices are discussed.
169 - Marc Noy , Lander Ramos 2014
We find precise asymptotic estimates for the number of planar maps and graphs with a condition on the minimum degree, and properties of random graphs from these classes. In particular we show that the size of the largest tree attached to the core of a random planar graph is of order c log(n) for an explicit constant c. These results provide new information on the structure of random planar graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا