ﻻ يوجد ملخص باللغة العربية
The Tutte polynomial is a powerfull analytic tool to study the structure of planar graphs. In this paper, we establish some relations between the number of clusters per bond for planar graph and its dual : these relations bring into play the coordination number of the graphs. The factorial moment measure of the number of clusters per bond are given using the derivative of the Tutte polynomial. Examples are presented for simple planar graph. The cases of square, triangular, honeycomb, Archimedean and Laves lattices are discussed.
We consider the asymptotic shape of clusters in the Eden model on a d-dimensional hypercubical lattice. We discuss two improvements for the well-known upper bound to the growth velocity in different directions by that of the independent branching pro
We prove that the spectral gap of a finite planar graph $X$ is bounded by $lambda_1(X)le C(frac{log(diam X)}{diam X})^2$ where $C$ depends only on the degree of $X$. We then give a sequence of such graphs showing the the above estimate cannot be impr
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seym
Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most $3$ is $7$-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations.