ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of interacting Kondo screened 4f moments in CePt5 with XMCD

108   0   0.0 ( 0 )
 نشر من قبل Kai Fauth
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use x-ray absorption and magnetic circular dichroism to study electronic configuration and local susceptibility of CePt5/Pt(111) surface alloys from well above to well below the impurity Kondo temperature. The anisotropic paramagnetic response is governed by the hexagonal crystal field and ferromagnetic correlations, with modified parameters for Ce moments residing next to the alloy surface. Quantitative XMCD evaluations provide direct evidence of Kondo screening of both spin and orbital 4f moments. Magnetic signatures of coherence are not apparent for T >= 13 K.



قيم البحث

اقرأ أيضاً

Long known to have thermodynamic properties at odds with its insulating electrical transport, SmB6 has been the subject of great debate as it is unclear whether its unusual properties are related to the bulk or novel metallic surface states. We have observed a bulk moment-screening effect in nominally pure and Gd-doped SmB6 via heat capacity, magnetization, and resistivity measurements, and show this new Kondo-impurity like effect provides an unexpected but intuitive explanation for metal-like phenomena stemming from the strongly interacting host system. This affords a coherent understanding for decades of mysteries in strongly-correlated insulators, reveals the expanded utility of techniques previously only utilized for metals, and presents the novel effect of even highly-dilute impurities in strongly correlated insulators.
148 - N. Xu , P. K. Biswas , J. H. Dil 2014
The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D) topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk [4]. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase. Applying spin- and angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6, a promising TKI candidate, we reveal that the surface states of SmB6 are spin polarized, and the spin is locked to the crystal momentum. Counter-propagating states (i.e. at k and -k) have opposite spin polarizations protected by time-reversal symmetry. Together with the odd number of Fermi surfaces of surface states between the 4 time-reversal invariant momenta in the surface Brillouin zone [5], these findings prove, for the first time, that SmB6 can host non-trivial topological surface states in a full insulating gap in the bulk stemming from the Kondo effect. Hence our experimental results establish that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal platform for the systematic study of the interplay between novel topological quantum states with emergent effects and competing order induced by strongly correlated electrons.
CeRhSi$_{3}$ is a superconductor under pressure coexisting with a weakly antiferromagnetic phase characterized by a Bragg peak at $vec{q}_{0}$=($sim$ 0.2, 0, 0.5) (N. Aso et al. J. Magn. Magn. Mater. 310, 602 (2007)). The compound is also a heavy fer mion material with a large specific heat coefficient $gamma$=110 mJ $cdot$ mol$^{-1}$ $cdot$ K$^{-2}$ and a high Kondo temperature of $T_{K}$=50 K indicative that CeRhSi$_{3}$ is in a strongly Kondo screened state. We apply high resolution neutron spectroscopy to investigate the magnetic fluctuations in the normal phase, at ambient pressures, and at low temperatures. We measure a commensurate dynamic response centered around the $vec{Q}$=(0, 0, 2) position that gradually evolves to H$sim$ 0.2 with decreasing temperature and/or energy transfers. The response is broadened both in momentum and energy and not reminiscent of sharp spin wave excitations found in insulating magnets where the electrons are localized. We parameterize the excitation spectrum and temperature dependence using a heuristic model utilizing the random phase approximation to couple relaxing Ce$^{3+}$ ground state Kramers doublets with a Kondo-like dynamic response. With a Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction within the $ab$ plane and an increasing single site susceptibility, we can qualitatively reproduce the neutron spectroscopic results in CeRhSi$_{3}$ and namely the trade-off between scattering at commensurate and incommensurate positions. We suggest that the antiferromagnetic phase in CeRhSi$_{3}$ is driven by weakly correlated relaxing localized Kramers doublets and that CeRhSi$_{3}$ at ambient pressures is on the border between a Rudderman-Kittel-Yosida antiferromagnetic state and a Kondo screened phase where static magnetism is predominately absent.
96 - Y. Zhang , W. Feng , X. Lou 2018
The electronic structure of the Kondo lattice CeIn3 has been studied by on-resonant angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. A weakly dispersive quasiparticle band has been observed directly with an en ergy dispersion of 4 meV by photoemission, implying the existence of weak hybridization between the f electrons and conduction electrons. The hybridization is further confirmed by the formation of the hybridization gap revealed by temperature-dependent scanning tunneling spectroscopy. Moreover, we find the hybridization strength in CeIn3 is much weaker than that in the more two-dimensional compounds CeCoIn5 and CeIrIn5. Our results may be essential for the complete microscopic understanding of this important compound and the related heavy-fermion systems.
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge r parameter $0<K<1$. The model has been studied in Ref. 21, and was mapped onto an anisotropic two-channel Kondo model via bosonization. For K<1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally weak tunnelings between dot and the 2DTI based on a simple scaling dimensional analysis[21]. We re-examine this model beyond the bare scaling dimension analysis via a 1-loop renormalization group (RG) approach combined with bosonization and re-fermionization techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for K -->1 that the 2CK fixed point can be unstable towards the 1CK fixed point and the system may undergo a quantum phase transition between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTI, and it serves as the first example of the 1CK-2CK QPT that is accessible by the controlled RG approach. We extract quantum critical and crossover behaviors from various thermodynamical quantities near the transition. Our results are robust against particle-hole asymmetry for 1/2<K<1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا