ﻻ يوجد ملخص باللغة العربية
The electronic structure of the Kondo lattice CeIn3 has been studied by on-resonant angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. A weakly dispersive quasiparticle band has been observed directly with an energy dispersion of 4 meV by photoemission, implying the existence of weak hybridization between the f electrons and conduction electrons. The hybridization is further confirmed by the formation of the hybridization gap revealed by temperature-dependent scanning tunneling spectroscopy. Moreover, we find the hybridization strength in CeIn3 is much weaker than that in the more two-dimensional compounds CeCoIn5 and CeIrIn5. Our results may be essential for the complete microscopic understanding of this important compound and the related heavy-fermion systems.
We show the three-dimensional electronic structure of the Kondo lattice CeIn3 using soft x-ray angle resolved photoemission spectroscopy in the paramagnetic state. For the first time, we have directly observed the three-dimensional topology of the Fe
Numerous phenomenological parallels have been drawn between f- and d- electron systems in an attempt to understand their display of unconventional superconductivity. The microscopics of how electrons evolve from participation in large moment antiferr
It is a long-standing important issue in heavy fermion physics whether $f$-electrons are itinerant or localized when the magnetic order occurs. Here we report the {it in situ} scanning tunneling microscopy observation of the electronic structure in e
Resolving the heavy fermion band in the conduction electron momentum resolved spectral function of the Kondo lattice model is challenging since, in the weak coupling limit, its spectral weight is exponentially small. In this article we consider a com
Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this