ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinger parameter $0<K<1$. The model has been studied in Ref. 21, and was mapped onto an anisotropic two-channel Kondo model via bosonization. For K<1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally weak tunnelings between dot and the 2DTI based on a simple scaling dimensional analysis[21]. We re-examine this model beyond the bare scaling dimension analysis via a 1-loop renormalization group (RG) approach combined with bosonization and re-fermionization techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for K -->1 that the 2CK fixed point can be unstable towards the 1CK fixed point and the system may undergo a quantum phase transition between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTI, and it serves as the first example of the 1CK-2CK QPT that is accessible by the controlled RG approach. We extract quantum critical and crossover behaviors from various thermodynamical quantities near the transition. Our results are robust against particle-hole asymmetry for 1/2<K<1.
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context o
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value.
We study quantum spin Hall insulators with local Coulomb interactions in the presence of boundaries using dynamical mean field theory. We investigate the different influence of the Coulomb interaction on the bulk and the edge states. Interestingly, w
The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importa
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini